Exploring Synaptic Resonance in Large Language Models: A Novel Approach to Contextual Memory Integration
- URL: http://arxiv.org/abs/2502.10699v1
- Date: Sat, 15 Feb 2025 07:06:10 GMT
- Title: Exploring Synaptic Resonance in Large Language Models: A Novel Approach to Contextual Memory Integration
- Authors: George Applegarth, Christian Weatherstone, Maximilian Hollingsworth, Henry Middlebrook, Marcus Irvin,
- Abstract summary: A novel mechanism, Synaptic Resonance, is introduced to dynamically reinforce relevant memory pathways during training and inference.
Evaluations conducted on an open-source language model demonstrate reductions in perplexity, enhancements in contextual coherence, and increased robustness against input noise.
- Score: 0.0
- License:
- Abstract: Contextual memory integration remains a high challenge in the development of language models, particularly in tasks that require maintaining coherence over extended sequences. Traditional approaches, such as self-attention mechanisms and memory-augmented architectures, often prioritize short-term dependencies, leading to fragmentation and inconsistency in long-range contextual understanding. Inspired by principles of synaptic plasticity observed in biological neural systems, a novel mechanism, Synaptic Resonance, is introduced to dynamically reinforce relevant memory pathways during training and inference. Unlike static memory representations, this mechanism continuously adjusts synaptic weight matrices based on contextual relevance, allowing for improved information retention without excessive computational overhead. Evaluations conducted on an open-source language model demonstrate reductions in perplexity, enhancements in contextual coherence, and increased robustness against input noise, highlighting the effectiveness of reinforcement-driven memory modulation. Comparative analysis against baseline models further reveals that the proposed approach achieves higher memory retention efficiency while maintaining computational feasibility. The architectural modifications integrate seamlessly into existing transformer-based frameworks, ensuring stable convergence and efficient inference without sacrificing scalability. Applications benefiting from improved long-term contextual consistency, such as dialogue systems and document summarization, stand to gain from this approach. Empirical findings suggest that dynamically reinforced memory pathways offer a promising alternative to conventional memory mechanisms, addressing longstanding limitations in extended sequence modeling.
Related papers
- Temporal Model On Quantum Logic [0.0]
The framework formalizes the evolution of propositions over time using linear and branching temporal models.
The hierarchical organization of memory is represented using directed acyclic graphs.
arXiv Detail & Related papers (2025-02-09T17:16:53Z) - Context-Preserving Gradient Modulation for Large Language Models: A Novel Approach to Semantic Consistency in Long-Form Text Generation [0.19791587637442667]
A novel modulation gradient approach is introduced to adjust parameter updates dynamically in response to contextual relevance.
The proposed method enhances the stability of model-generated narratives without imposing significant computational overhead.
arXiv Detail & Related papers (2025-02-05T22:13:06Z) - Contextual Memory Reweaving in Large Language Models Using Layered Latent State Reconstruction [0.0]
Token dependencies degrade as sequence length increases, leading to a decline in coherence and factual consistency.
A structured approach is introduced to mitigate this issue through the reweaving of latent states captured at different processing layers.
The proposed Contextual Memory Reweaving framework incorporates a Layered Latent State Reconstruction mechanism.
arXiv Detail & Related papers (2025-02-04T06:25:20Z) - Autonomous Structural Memory Manipulation for Large Language Models Using Hierarchical Embedding Augmentation [0.0]
This study introduces hierarchical embedding augmentation as a means to redefine the representation of tokens through multi-level semantic structures.
Results reveal substantial improvements in computational efficiency, with marked reductions in processing overhead for longer input sequences.
The ability to dynamically adjust token representations and memory configurations contributed to the model's robustness under varied and unpredictable input conditions.
arXiv Detail & Related papers (2025-01-23T22:20:36Z) - Neuron: Learning Context-Aware Evolving Representations for Zero-Shot Skeleton Action Recognition [64.56321246196859]
We propose a novel dyNamically Evolving dUal skeleton-semantic syneRgistic framework.
We first construct the spatial-temporal evolving micro-prototypes and integrate dynamic context-aware side information.
We introduce the spatial compression and temporal memory mechanisms to guide the growth of spatial-temporal micro-prototypes.
arXiv Detail & Related papers (2024-11-18T05:16:11Z) - Integrating Temporal Representations for Dynamic Memory Retrieval and Management in Large Language Models [8.943924354248622]
We propose SynapticRAG, a novel approach integrating synaptic dynamics into Retrieval-Augmented Generation (RAG)
Our approach advances context-aware dialogue AI systems by enhancing long-term context maintenance and specific information extraction from conversations.
arXiv Detail & Related papers (2024-10-17T13:51:03Z) - Stable Hadamard Memory: Revitalizing Memory-Augmented Agents for Reinforcement Learning [64.93848182403116]
Current deep-learning memory models struggle in reinforcement learning environments that are partially observable and long-term.
We introduce the Stable Hadamard Memory, a novel memory model for reinforcement learning agents.
Our approach significantly outperforms state-of-the-art memory-based methods on challenging partially observable benchmarks.
arXiv Detail & Related papers (2024-10-14T03:50:17Z) - Boosting CNN-based Handwriting Recognition Systems with Learnable Relaxation Labeling [48.78361527873024]
We propose a novel approach to handwriting recognition that integrates the strengths of two distinct methodologies.
We introduce a sparsification technique that accelerates the convergence of the algorithm and enhances the overall system's performance.
arXiv Detail & Related papers (2024-09-09T15:12:28Z) - Incorporating Neuro-Inspired Adaptability for Continual Learning in
Artificial Intelligence [59.11038175596807]
Continual learning aims to empower artificial intelligence with strong adaptability to the real world.
Existing advances mainly focus on preserving memory stability to overcome catastrophic forgetting.
We propose a generic approach that appropriately attenuates old memories in parameter distributions to improve learning plasticity.
arXiv Detail & Related papers (2023-08-29T02:43:58Z) - Untangling tradeoffs between recurrence and self-attention in neural
networks [81.30894993852813]
We present a formal analysis of how self-attention affects gradient propagation in recurrent networks.
We prove that it mitigates the problem of vanishing gradients when trying to capture long-term dependencies.
We propose a relevancy screening mechanism that allows for a scalable use of sparse self-attention with recurrence.
arXiv Detail & Related papers (2020-06-16T19:24:25Z) - On dissipative symplectic integration with applications to
gradient-based optimization [77.34726150561087]
We propose a geometric framework in which discretizations can be realized systematically.
We show that a generalization of symplectic to nonconservative and in particular dissipative Hamiltonian systems is able to preserve rates of convergence up to a controlled error.
arXiv Detail & Related papers (2020-04-15T00:36:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.