Comparative performance analysis of the ResNet backbones of Mask RCNN to
segment the signs of COVID-19 in chest CT scans
- URL: http://arxiv.org/abs/2008.09713v1
- Date: Fri, 21 Aug 2020 23:42:08 GMT
- Title: Comparative performance analysis of the ResNet backbones of Mask RCNN to
segment the signs of COVID-19 in chest CT scans
- Authors: Muhammad Aleem, Rahul Raj and Arshad Khan
- Abstract summary: This paper aims to identify and monitor the effects of COVID-19 on the human lungs by employing Deep Neural Networks on axial CT scan of lungs.
We have adopted Mask RCNN, with ResNet50 and ResNet101 as its backbone, to segment the regions, affected by COVID-19 coronavirus.
Using the regions of human lungs, where symptoms have manifested, the model classifies condition of the patient as either "Mild" or "Alarming"
- Score: 1.2461503242570642
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: COVID-19 has been detrimental in terms of the number of fatalities and rising
number of critical patients across the world. According to the UNDP (United
National Development Programme) Socio-Economic programme, aimed at the COVID-19
crisis, the pandemic is far more than a health crisis: it is affecting
societies and economies at their core. There has been greater developments
recently in the chest X-ray-based imaging technique as part of the COVID-19
diagnosis especially using Convolution Neural Networks (CNN) for recognising
and classifying images. However, given the limitation of supervised labelled
imaging data, the classification and predictive risk modelling of medical
diagnosis tend to compromise. This paper aims to identify and monitor the
effects of COVID-19 on the human lungs by employing Deep Neural Networks on
axial CT (Chest Computed Tomography) scan of lungs. We have adopted Mask RCNN,
with ResNet50 and ResNet101 as its backbone, to segment the regions, affected
by COVID-19 coronavirus. Using the regions of human lungs, where symptoms have
manifested, the model classifies condition of the patient as either "Mild" or
"Alarming". Moreover, the model is deployed on the Google Cloud Platform (GCP)
to simulate the online usage of the model for performance evaluation and
accuracy improvement. The ResNet101 backbone model produces an F1 score of 0.85
and faster prediction scores with an average time of 9.04 seconds per
inference.
Related papers
- Auto-Lesion Segmentation with a Novel Intensity Dark Channel Prior for
COVID-19 Detection [0.24578723416255752]
This study develops a CT-based radiomics framework for differentiation of COVID-19 from other lung diseases.
The model categorizes images into three classes: COVID-19, non-COVID-19, or normal.
The best performing classification model, Residual Neural Network with 50 layers (Resnet-50), attained an average accuracy, precision, recall, and F1-score of 98.8%, 99%, 98%, and 98% respectively.
arXiv Detail & Related papers (2023-09-22T06:09:48Z) - COVID-19 Pneumonia and Influenza Pneumonia Detection Using Convolutional
Neural Networks [0.0]
We developed a computer solution to support vision in differentiating between COVID-19 pneumonia, influenza virus pneumonia, and normal biomarkers.
In its classification performance, the best performing model demonstrated a validation accuracy of 93% and an F1 score of 0.95.
arXiv Detail & Related papers (2021-12-14T01:59:25Z) - COVID-Net US: A Tailored, Highly Efficient, Self-Attention Deep
Convolutional Neural Network Design for Detection of COVID-19 Patient Cases
from Point-of-care Ultrasound Imaging [101.27276001592101]
We introduce COVID-Net US, a highly efficient, self-attention deep convolutional neural network design tailored for COVID-19 screening from lung POCUS images.
Experimental results show that the proposed COVID-Net US can achieve an AUC of over 0.98 while achieving 353X lower architectural complexity, 62X lower computational complexity, and 14.3X faster inference times on a Raspberry Pi.
To advocate affordable healthcare and artificial intelligence for resource-constrained environments, we have made COVID-Net US open source and publicly available as part of the COVID-Net open source initiative.
arXiv Detail & Related papers (2021-08-05T16:47:33Z) - Wide & Deep neural network model for patch aggregation in CNN-based
prostate cancer detection systems [51.19354417900591]
Prostate cancer (PCa) is one of the leading causes of death among men, with almost 1.41 million new cases and around 375,000 deaths in 2020.
To perform an automatic diagnosis, prostate tissue samples are first digitized into gigapixel-resolution whole-slide images.
Small subimages called patches are extracted and predicted, obtaining a patch-level classification.
arXiv Detail & Related papers (2021-05-20T18:13:58Z) - COVID-Net CT-S: 3D Convolutional Neural Network Architectures for
COVID-19 Severity Assessment using Chest CT Images [85.00197722241262]
We introduce COVID-Net CT-S, a suite of deep convolutional neural networks for predicting lung disease severity due to COVID-19 infection.
A 3D residual architecture design is leveraged to learn volumetric visual indicators characterizing the degree of COVID-19 lung disease severity.
arXiv Detail & Related papers (2021-05-04T04:44:41Z) - COVID-19 Infection Localization and Severity Grading from Chest X-ray
Images [3.4546388019336143]
Coronavirus disease 2019 (COVID-19) has been the main agenda of the whole world, since it came into sight in December 2019.
We have constructed the largest benchmark dataset with 33,920 CXR images, including 11,956 COVID-19 samples.
The proposed approach has achieved an outstanding COVID-19 detection performance with both sensitivity and specificity values above 99%.
arXiv Detail & Related papers (2021-03-14T18:06:06Z) - COVID-Net CT-2: Enhanced Deep Neural Networks for Detection of COVID-19
from Chest CT Images Through Bigger, More Diverse Learning [70.92379567261304]
We introduce COVID-Net CT-2, enhanced deep neural networks for COVID-19 detection from chest CT images.
We leverage explainability to investigate the decision-making behaviour of COVID-Net CT-2.
Results are promising and suggest the strong potential of deep neural networks as an effective tool for computer-aided COVID-19 assessment.
arXiv Detail & Related papers (2021-01-19T03:04:09Z) - COVIDNet-CT: A Tailored Deep Convolutional Neural Network Design for
Detection of COVID-19 Cases from Chest CT Images [75.74756992992147]
We introduce COVIDNet-CT, a deep convolutional neural network architecture that is tailored for detection of COVID-19 cases from chest CT images.
We also introduce COVIDx-CT, a benchmark CT image dataset derived from CT imaging data collected by the China National Center for Bioinformation.
arXiv Detail & Related papers (2020-09-08T15:49:55Z) - Automated Chest CT Image Segmentation of COVID-19 Lung Infection based
on 3D U-Net [0.0]
The coronavirus disease 2019 (COVID-19) affects billions of lives around the world and has a significant impact on public healthcare.
We propose an innovative automated segmentation pipeline for COVID-19 infected regions.
Our method focuses on on-the-fly generation of unique and random image patches for training by performing several preprocessing methods.
arXiv Detail & Related papers (2020-06-24T17:29:26Z) - Automated diagnosis of COVID-19 with limited posteroanterior chest X-ray
images using fine-tuned deep neural networks [4.294650528226683]
COVID-19 is a respiratory syndrome that resembles pneumonia.
Scientists, researchers and healthcare experts are contributing for faster and automated diagnosis of COVID-19 by identifying pulmonary infections.
This article presents the random oversampling and weighted class loss function approach for unbiased fine-tuned learning (transfer learning) in various state-of-the-art deep learning approaches.
arXiv Detail & Related papers (2020-04-23T10:24:34Z) - Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Images [152.34988415258988]
Automated detection of lung infections from computed tomography (CT) images offers a great potential to augment the traditional healthcare strategy for tackling COVID-19.
segmenting infected regions from CT slices faces several challenges, including high variation in infection characteristics, and low intensity contrast between infections and normal tissues.
To address these challenges, a novel COVID-19 Deep Lung Infection Network (Inf-Net) is proposed to automatically identify infected regions from chest CT slices.
arXiv Detail & Related papers (2020-04-22T07:30:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.