論文の概要: Clone-Robust AI Alignment
- arxiv url: http://arxiv.org/abs/2501.09254v1
- Date: Thu, 16 Jan 2025 02:43:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-17 15:11:02.706068
- Title: Clone-Robust AI Alignment
- Title(参考訳): Clone-Robust AIアライメント
- Authors: Ariel D. Procaccia, Benjamin Schiffer, Shirley Zhang,
- Abstract要約: Reinforcement Learning with Human Feedback (RLHF)は、人間アノテータのペア比較を用いて報酬関数を訓練する。
我々はRLHFアルゴリズムの望ましい特性である近似クローンにロバスト性を導入する。
我々は、標準正規化最大推定値を変更する新しいRLHFアルゴリズムである重み付きMLEを提案する。
- 参考スコア(独自算出の注目度): 20.38824614301761
- License:
- Abstract: A key challenge in training Large Language Models (LLMs) is properly aligning them with human preferences. Reinforcement Learning with Human Feedback (RLHF) uses pairwise comparisons from human annotators to train reward functions and has emerged as a popular alignment method. However, input datasets in RLHF are not necessarily balanced in the types of questions and answers that are included. Therefore, we want RLHF algorithms to perform well even when the set of alternatives is not uniformly distributed. Drawing on insights from social choice theory, we introduce robustness to approximate clones, a desirable property of RLHF algorithms which requires that adding near-duplicate alternatives does not significantly change the learned reward function. We first demonstrate that the standard RLHF algorithm based on regularized maximum likelihood estimation (MLE) fails to satisfy this property. We then propose the weighted MLE, a new RLHF algorithm that modifies the standard regularized MLE by weighting alternatives based on their similarity to other alternatives. This new algorithm guarantees robustness to approximate clones while preserving desirable theoretical properties.
- Abstract(参考訳): LLM(Large Language Models)のトレーニングにおける重要な課題は、それらを人間の好みと適切に整合させることである。
Reinforcement Learning with Human Feedback (RLHF)は、人間アノテータのペア比較を用いて報酬関数を訓練し、一般的なアライメント手法として登場した。
しかし、RLHFの入力データセットは、含んでいる質問や回答の種類で必ずしもバランスが取れていない。
したがって,RLHFアルゴリズムは,一意に分散されていなくても良好に動作できることが望まれる。
RLHFアルゴリズムの望ましい性質として, 社会選択論からの洞察をもとにして, 学習報酬関数をほぼ重複する代替品を追加することは, 学習報酬関数を著しく変更しない。
まず、正規化最大推定(MLE)に基づく標準RLHFアルゴリズムが、この特性を満たすことができないことを示す。
次に、他の代替品と類似性に基づいて代替品を重み付けすることで、標準正規化MLEを変更する新しいRLHFアルゴリズムである重み付きMLEを提案する。
このアルゴリズムは、望ましい理論的性質を保ちながら、近似クローンに対する堅牢性を保証する。
関連論文リスト
- Zeroth-Order Policy Gradient for Reinforcement Learning from Human
Feedback without Reward Inference [17.76565371753346]
本稿では,報酬推論を伴わない2つのRLHFアルゴリズムを提案する。
鍵となる考え方は、人間の嗜好と異なる局所値関数を推定し、ゼロ階勾配近似器でポリシー勾配を近似することである。
以上の結果から,報酬推論なしで一般RLHF問題の解法が確立できることが示唆された。
論文 参考訳(メタデータ) (2024-09-25T22:20:11Z) - BOND: Aligning LLMs with Best-of-N Distillation [63.254031574394965]
BOND(Best-of-N Distillation)は,Best-of-Nをエミュレートする新しいRLHFアルゴリズムである。
具体的には、BONDは、ポリシーから世代分布をBest-of-N分布に近づけるように強制する分布マッチングアルゴリズムである。
本稿では,抽象的な要約モデルとGemmaモデルの実験を通じて,提案手法の有効性といくつかの設計選択を実証する。
論文 参考訳(メタデータ) (2024-07-19T18:38:25Z) - Robust Reinforcement Learning from Corrupted Human Feedback [86.17030012828003]
人間からのフィードバックからの強化学習(RLHF)は、AIシステムと人間の嗜好データを調整するための原則化されたフレームワークを提供する。
我々はRLHFのロバストなアプローチ-$R3M$を提案し、これは、潜在的に破損した選好ラベルをスパースアウトリーとしてモデル化する。
大規模言語モデル(LLM)を用いたロボット制御と自然言語生成の実験により、R3M$は、好みデータに対する様々な摂動に対する報酬の堅牢性を向上することを示した。
論文 参考訳(メタデータ) (2024-06-21T18:06:30Z) - Reinforcement Learning from Human Feedback without Reward Inference: Model-Free Algorithm and Instance-Dependent Analysis [16.288866201806382]
モデルフリーなRLHFベストポリシー識別アルゴリズムである$mathsfBSAD$を、明示的な報酬モデル推論なしで開発する。
アルゴリズムは、人選好情報から直接、その最適方針を後方方向に識別する。
論文 参考訳(メタデータ) (2024-06-11T17:01:41Z) - On the Algorithmic Bias of Aligning Large Language Models with RLHF: Preference Collapse and Matching Regularization [33.331389392270665]
選好マッチング(PM) RLHF はBradley-Terry--Luce/Plackett--Luce モデルの下で、大きな言語モデルと報酬モデルの選好分布を整合させる新しいアプローチである。
我々のアプローチの中心はPM正則化器であり、応答上の LLM のポリシー確率分布の負の対数の形を取る。
本稿では,自然言語生成に適した条件付きPM RLHFを提案する。
論文 参考訳(メタデータ) (2024-05-26T07:00:05Z) - Contrastive Preference Learning: Learning from Human Feedback without RL [71.77024922527642]
本稿では、報酬関数を学習せずに好みから最適なポリシーを学習するアルゴリズムであるContrastive Preference Learning (CPL)を紹介する。
CPLは完全に非政治的であり、単純なコントラスト目的のみを使用し、任意のMDPに適用できる。
論文 参考訳(メタデータ) (2023-10-20T16:37:56Z) - Direct Preference Optimization: Your Language Model is Secretly a Reward Model [119.65409513119963]
本稿では,RLHFにおける報酬モデルの新たなパラメータ化について紹介する。
DPO(Direct Preference Optimization)と呼ばれる結果のアルゴリズムは、安定的で、性能が高く、計算的にも軽量である。
我々の実験は、DPOが人間の好みに合わせて微調整できるだけでなく、既存の方法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-05-29T17:57:46Z) - RRHF: Rank Responses to Align Language Models with Human Feedback
without tears [69.68672043223249]
InstructGPTは、SFT(Supervised Fine-Tuning)、報酬モデルトレーニング、PPO(Proximal Policy Optimization)など、いくつかの段階を通じてRLHFを実装している。
本稿では,条件付き確率の対数を用いて,異なるソースからのサンプル応答をスコアするRRHFという新しい学習パラダイムを提案する。
我々は、Helpful and Harmlessデータセット上でRRHFを評価し、報酬モデルスコアと人間ラベルによるPPOと同等のアライメント性能を示す。
論文 参考訳(メタデータ) (2023-04-11T15:53:40Z) - Oracle Inequalities for Model Selection in Offline Reinforcement
Learning [105.74139523696284]
本稿では,値関数近似を用いたオフラインRLにおけるモデル選択の問題について検討する。
対数係数まで最小値の速度-最適不等式を実現するオフラインRLの最初のモデル選択アルゴリズムを提案する。
そこで本研究では,優れたモデルクラスを確実に選択できることを示す数値シミュレーションを行った。
論文 参考訳(メタデータ) (2022-11-03T17:32:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。