論文の概要: Delayed Fusion: Integrating Large Language Models into First-Pass Decoding in End-to-end Speech Recognition
- arxiv url: http://arxiv.org/abs/2501.09258v1
- Date: Thu, 16 Jan 2025 03:01:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-17 15:09:33.421217
- Title: Delayed Fusion: Integrating Large Language Models into First-Pass Decoding in End-to-end Speech Recognition
- Title(参考訳): Delayed Fusion:エンド・ツー・エンド音声認識における大規模言語モデルのファーストパスデコーディングへの統合
- Authors: Takaaki Hori, Martin Kocour, Adnan Haider, Erik McDermott, Xiaodan Zhuang,
- Abstract要約: 本稿では,大規模言語モデル(LLM)を用いたエンドツーエンド自動音声認識(E2E-ASR)の効率的な復号化手法を提案する。
復号時に遅延を伴うASR仮説にLLMスコアを適用する「遅延融合」を提案する。
遅延核融合により、浅い核融合やN-best再コーディングに比べてデコード速度と精度が向上することを示した。
- 参考スコア(独自算出の注目度): 17.376550014426623
- License:
- Abstract: This paper presents an efficient decoding approach for end-to-end automatic speech recognition (E2E-ASR) with large language models (LLMs). Although shallow fusion is the most common approach to incorporate language models into E2E-ASR decoding, we face two practical problems with LLMs. (1) LLM inference is computationally costly. (2) There may be a vocabulary mismatch between the ASR model and the LLM. To resolve this mismatch, we need to retrain the ASR model and/or the LLM, which is at best time-consuming and in many cases not feasible. We propose "delayed fusion," which applies LLM scores to ASR hypotheses with a delay during decoding and enables easier use of pre-trained LLMs in ASR tasks. This method can reduce not only the number of hypotheses scored by the LLM but also the number of LLM inference calls. It also allows re-tokenizion of ASR hypotheses during decoding if ASR and LLM employ different tokenizations. We demonstrate that delayed fusion provides improved decoding speed and accuracy compared to shallow fusion and N-best rescoring using the LibriHeavy ASR corpus and three public LLMs, OpenLLaMA 3B & 7B and Mistral 7B.
- Abstract(参考訳): 本稿では,大規模言語モデル(LLM)を用いたエンドツーエンド自動音声認識(E2E-ASR)の効率的な復号化手法を提案する。
浅い融合は言語モデルをE2E-ASRデコードに組み込む最も一般的な手法であるが、LLMでは2つの現実的な問題に直面している。
1) LLM推論は計算コストがかかる。
2) ASRモデルとLLMの間には語彙ミスマッチが存在する可能性がある。
このミスマッチを解決するには、ASRモデルやLLMを再訓練する必要がある。
本稿では,復号化の遅れを伴うASR仮説にLLMスコアを適用し,事前学習したLLMをASRタスクで簡単に利用できる「遅延融合」を提案する。
この手法は、LSMによって得られた仮説の数を削減できるだけでなく、LSM推論の回数も削減できる。
また、ASR と LLM が異なるトークン化を用いる場合、復号中に ASR の仮説を再認識することができる。
遅延核融合は、LibriHeavy ASRコーパスとOpenLLaMA 3B & 7BとMistral 7Bの3つのパブリックLLMを用いて、浅い核融合とN-best再構成と比較して、デコード速度と精度が向上することを示した。
関連論文リスト
- Real-time Verification and Refinement of Language Model Text Generation [60.04718679054704]
大規模言語モデル(LLM)は、幅広い自然言語タスクにおいて顕著な性能を示している。
重要な課題は、時に事実的に誤った答えを生じさせることである。
本稿では,LLM出力の検証と改善の効率化を目的とした新しい手法であるStreaming-VRを提案する。
論文 参考訳(メタデータ) (2025-01-14T03:59:48Z) - SWIFT: On-the-Fly Self-Speculative Decoding for LLM Inference Acceleration [10.970637831760136]
投機的復号法(SD)は,大規模言語モデル(LLM)の推論を高速化するパラダイムとして広く用いられている。
本稿では,LLMの中間層を適応的に選択して推論時にスキップする,オンザフライの自己投機的復号アルゴリズムであるSWIFTを紹介する。
SWIFTは生成したテキストの元の分布を保ちながら1.3x-1.6xの高速化を実現可能であることを示す。
論文 参考訳(メタデータ) (2024-10-09T14:15:30Z) - SALSA: Speedy ASR-LLM Synchronous Aggregation [40.91241351045586]
本研究では,ASRのデコーダ層をLLMデコーダに結合し,両デコーダを同期的に進行させるSALSAを提案する。
FLEURSベンチマークでは,8つの低リソース言語上でSALSAを評価し,最大38%のWER削減を実現した。
論文 参考訳(メタデータ) (2024-08-29T14:00:57Z) - An Embarrassingly Simple Approach for LLM with Strong ASR Capacity [56.30595787061546]
我々は,音声基礎エンコーダと大規模言語モデル(LLM)を用いて,音声処理の分野で最も重要な課題の1つを解決することに注力する。
最近の研究は、音声エンコーダの出力を時間的に圧縮したり、プロジェクタのモーダルアライメントに対処したり、LLMのパラメータ効率の良い微調整を利用するといった複雑な設計をしている。
そこで本研究では,市販の音声エンコーダLLMと,トレーニング可能な唯一の線形プロジェクタの単純な構成がASRタスクに適しているのに対して,繊細な設計は必要ないことを発見した。
論文 参考訳(メタデータ) (2024-02-13T23:25:04Z) - LLMRefine: Pinpointing and Refining Large Language Models via Fine-Grained Actionable Feedback [65.84061725174269]
最近の大規模言語モデル(LLM)は、世代品質を改善するために人間のフィードバックを活用している。
LLMの出力を最適化する推論時間最適化手法であるLLMRefineを提案する。
機械翻訳、長文質問応答(QA)、話題要約を含む3つのテキスト生成タスクについて実験を行った。
LLMRefineは、すべてのベースラインアプローチを一貫して上回り、翻訳タスクの1.7 MetricXポイント、ASQAの8.1 ROUGE-L、トピックの要約の2.2 ROUGE-Lの改善を実現している。
論文 参考訳(メタデータ) (2023-11-15T19:52:11Z) - Rephrase and Respond: Let Large Language Models Ask Better Questions for Themselves [57.974103113675795]
本稿では,Rephrase and Respond'(RaR)という手法を提案する。
RaRは、パフォーマンスを改善するためのシンプルだが効果的なプロンプト方法として機能する。
また,RaRは理論的にも経験的にも,一般的なChain-of-Thought(CoT)法と相補的であることを示す。
論文 参考訳(メタデータ) (2023-11-07T18:43:34Z) - Prompting Large Language Models for Zero-Shot Domain Adaptation in
Speech Recognition [33.07184218085399]
ドメイン固有のテキストプロンプトのみを用いて、LLaMAを用いた2つのゼロショットASRドメイン適応手法を提案する。
実験により、ドメインのプロンプトが1つしかないと、どちらの手法もドメイン外のTedLium-2とSPGIデータセットのワードエラー率(WER)を効果的に削減できることが示された。
論文 参考訳(メタデータ) (2023-06-28T08:29:00Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
大規模言語モデル(LLM)は、言語理解と生成において顕著な能力を示している。
タスク非依存であり、元のトレーニングデータセットへの依存を最小限に抑えるという2つの制約の範囲内でLLMの圧縮に取り組む。
LLM-Prunerという名前のこの手法は、非臨界結合構造を選択的に除去する構造プルーニングを採用する。
論文 参考訳(メタデータ) (2023-05-19T12:10:53Z) - Inference with Reference: Lossless Acceleration of Large Language Models [97.04200102556551]
LLMAは、参照によるLarge Language Model (LLM)推論を高速化するアクセラレータである。
LLMによる復号結果と実世界の多くのシナリオで利用できる参照との間には、多くの同一のテキストが存在していることが観察の動機となっている。
論文 参考訳(メタデータ) (2023-04-10T09:55:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。