論文の概要: Inference with Reference: Lossless Acceleration of Large Language Models
- arxiv url: http://arxiv.org/abs/2304.04487v1
- Date: Mon, 10 Apr 2023 09:55:14 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-11 15:28:27.444049
- Title: Inference with Reference: Lossless Acceleration of Large Language Models
- Title(参考訳): 参照による推論:大規模言語モデルのロスレス加速
- Authors: Nan Yang, Tao Ge, Liang Wang, Binxing Jiao, Daxin Jiang, Linjun Yang,
Rangan Majumder, Furu Wei
- Abstract要約: LLMAは、参照によるLarge Language Model (LLM)推論を高速化するアクセラレータである。
LLMによる復号結果と実世界の多くのシナリオで利用できる参照との間には、多くの同一のテキストが存在していることが観察の動機となっている。
- 参考スコア(独自算出の注目度): 97.04200102556551
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose LLMA, an LLM accelerator to losslessly speed up Large Language
Model (LLM) inference with references. LLMA is motivated by the observation
that there are abundant identical text spans between the decoding result by an
LLM and the reference that is available in many real world scenarios (e.g.,
retrieved documents). LLMA first selects a text span from the reference and
copies its tokens to the decoder and then efficiently checks the tokens'
appropriateness as the decoding result in parallel within one decoding step.
The improved computational parallelism allows LLMA to achieve over 2x speed-up
for LLMs with identical generation results as greedy decoding in many practical
generation scenarios where significant overlap between in-context reference and
outputs exists (e.g., search engines and multi-turn conversations).
- Abstract(参考訳): LLMアクセラレータであるLLMAを提案し、参照によるLarge Language Model (LLM)推論を無作為に高速化する。
LLMAは、LLMによる復号結果と多くの現実世界のシナリオ(例えば、検索された文書)で利用できる参照の間には、多くの同一のテキストが存在しているという観察によって動機づけられている。
LLMAはまず、参照からスパンのテキストを選択し、トークンをデコーダにコピーし、トークンの妥当性を1つのデコードステップ内で並列にチェックする。
計算並列性の改善によりLLMAは、文脈内参照と出力の間に大きな重複が存在する現実的なシナリオ(検索エンジンやマルチターン会話など)において、greedyデコードと同じ生成結果でLLMの2倍のスピードアップを達成することができる。
関連論文リスト
- Text-like Encoding of Collaborative Information in Large Language Models for Recommendation [58.87865271693269]
BinLLMはLarge Language Models for Recommendation (LLMRec)とシームレスに連携する新しい手法である。
BinLLMは、外部モデルからの協調的な埋め込みをバイナリシーケンスに変換する。
BinLLMは、ドット決定記法を用いてバイナリシーケンスを圧縮するオプションを提供し、過度に長い長さを避ける。
論文 参考訳(メタデータ) (2024-06-05T12:45:25Z) - CodecLM: Aligning Language Models with Tailored Synthetic Data [51.59223474427153]
命令追従能力のための高品質な合成データを適応的に生成するフレームワークであるCodecLMを紹介する。
まず、ターゲットの指示分布をキャプチャするために、オンザフライで生成された簡潔なキーワードであるメタデータにシード命令をエンコードする。
また、デコード中に自己論理とコントラストフィルタを導入し、データ効率の良いサンプルを調整する。
論文 参考訳(メタデータ) (2024-04-08T21:15:36Z) - Think Big, Generate Quick: LLM-to-SLM for Fast Autoregressive Decoding [15.723047976314751]
大規模言語モデル(LLM)は、実際にはユビキタスなものとなり、翻訳、要約、命令の追従といった生成タスクに広く利用されている。
本稿では,異なるサイズの言語モデルを組み合わせて,自己回帰復号化の効率を高めるハイブリッド手法を提案する。
論文 参考訳(メタデータ) (2024-02-26T18:59:28Z) - Generation Meets Verification: Accelerating Large Language Model Inference with Smart Parallel Auto-Correct Decoding [11.832919020149891]
本研究の目的は,数十億のパラメータを持つ大規模言語モデル(LLM)の推論速度を高速化することである。
textbfSmart textbfParallel textbfAuto-textbfCorrect dtextbfEcoding (SPACE)を提案する。
論文 参考訳(メタデータ) (2024-02-19T03:39:10Z) - Making Large Language Models A Better Foundation For Dense Retrieval [19.38740248464456]
デンス検索では,クエリとドキュメント間の意味的関係を表現するために,識別テキストの埋め込みを学習する必要がある。
意味理解におけるLLMの強い能力を考えると、大きな言語モデル(LLM)の使用の恩恵を受けるかもしれない。
本稿では,LLaRA (LLM adapted for dense RetrievAl) を提案する。
論文 参考訳(メタデータ) (2023-12-24T15:10:35Z) - Speech Translation with Large Language Models: An Industrial Practice [64.5419534101104]
LLM-STは,事前学習型大言語モデル(LLM)に基づいて構築された,新規で効果的な音声翻訳モデルである。
大規模言語モデル(LLM)を音声エンコーダと統合し、マルチタスクの命令チューニングを利用することで、LLM-STは正確なタイムスタンプと翻訳を生成することができる。
英語と中国語のデータセットの厳密な実験を通じて,LLM-STの異常な性能を示す。
論文 参考訳(メタデータ) (2023-12-21T05:32:49Z) - LLMRefine: Pinpointing and Refining Large Language Models via Fine-Grained Actionable Feedback [65.84061725174269]
最近の大規模言語モデル(LLM)は、世代品質を改善するために人間のフィードバックを活用している。
LLMの出力を最適化する推論時間最適化手法であるLLMRefineを提案する。
機械翻訳、長文質問応答(QA)、話題要約を含む3つのテキスト生成タスクについて実験を行った。
LLMRefineは、すべてのベースラインアプローチを一貫して上回り、翻訳タスクの1.7 MetricXポイント、ASQAの8.1 ROUGE-L、トピックの要約の2.2 ROUGE-Lの改善を実現している。
論文 参考訳(メタデータ) (2023-11-15T19:52:11Z) - Fast Chain-of-Thought: A Glance of Future from Parallel Decoding Leads to Answers Faster [61.83949316226113]
FastCoTは並列デコーディングに基づくモデルに依存しないフレームワークである。
我々は、FastCoTが通常のアプローチと比較して、無視できる性能低下だけで、推論時間を20%近く削減できることを示します。
論文 参考訳(メタデータ) (2023-11-14T15:56:18Z) - Harnessing the Zero-Shot Power of Instruction-Tuned Large Language Model in End-to-End Speech Recognition [23.172469312225694]
自動音声認識(ASR)におけるテキスト生成プロセスの指導に,命令調整付き大言語モデル(LLM)を用いることを提案する。
提案手法はCTCとアテンションアーキテクチャを併用し,LLMはデコーダのフロントエンド特徴抽出器として機能する。
実験結果から,LLM誘導モデルによる単語誤り率の相対的な増加率は,主要なベンチマークで約13%であった。
論文 参考訳(メタデータ) (2023-09-19T11:10:50Z) - LLMCad: Fast and Scalable On-device Large Language Model Inference [11.103824752113148]
テキスト生成や質問応答といった生成タスクは、モバイルアプリケーションの領域において重要な位置を占める。
現在、これらの生成タスクの実行は、大規模言語モデル(LLM)に大きく依存している。
本稿では,効率的な生成自然言語処理(NLP)タスク用に設計されたオンデバイス推論エンジンであるLLMCadを紹介する。
論文 参考訳(メタデータ) (2023-09-08T10:44:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。