論文の概要: Free-Knots Kolmogorov-Arnold Network: On the Analysis of Spline Knots and Advancing Stability
- arxiv url: http://arxiv.org/abs/2501.09283v1
- Date: Thu, 16 Jan 2025 04:12:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-17 15:09:47.902507
- Title: Free-Knots Kolmogorov-Arnold Network: On the Analysis of Spline Knots and Advancing Stability
- Title(参考訳): Free-Knots Kolmogorov-Arnold Network: スプライン結び目の解析と安定化について
- Authors: Liangwewi Nathan Zheng, Wei Emma Zhang, Lin Yue, Miao Xu, Olaf Maennel, Weitong Chen,
- Abstract要約: Kolmogorov-Arnold Neural Networks (KAN)は、機械学習コミュニティにおいて大きな注目を集めている。
しかしながら、それらの実装はトレーニングの安定性が悪く、重いトレーニング可能なパラメータに悩まされることが多い。
本研究では, スプラインノットのレンズによるカンの挙動を解析し, B-スプライン系カンの結び目数に対する上下境界を導出する。
- 参考スコア(独自算出の注目度): 16.957071012748454
- License:
- Abstract: Kolmogorov-Arnold Neural Networks (KANs) have gained significant attention in the machine learning community. However, their implementation often suffers from poor training stability and heavy trainable parameter. Furthermore, there is limited understanding of the behavior of the learned activation functions derived from B-splines. In this work, we analyze the behavior of KANs through the lens of spline knots and derive the lower and upper bound for the number of knots in B-spline-based KANs. To address existing limitations, we propose a novel Free Knots KAN that enhances the performance of the original KAN while reducing the number of trainable parameters to match the trainable parameter scale of standard Multi-Layer Perceptrons (MLPs). Additionally, we introduce new a training strategy to ensure $C^2$ continuity of the learnable spline, resulting in smoother activation compared to the original KAN and improve the training stability by range expansion. The proposed method is comprehensively evaluated on 8 datasets spanning various domains, including image, text, time series, multimodal, and function approximation tasks. The promising results demonstrates the feasibility of KAN-based network and the effectiveness of proposed method.
- Abstract(参考訳): Kolmogorov-Arnold Neural Networks (KAN)は、機械学習コミュニティにおいて大きな注目を集めている。
しかしながら、それらの実装はトレーニングの安定性が悪く、重いトレーニング可能なパラメータに悩まされることが多い。
さらに,B-スプラインから得られた学習活性化関数の挙動について,限定的な理解が得られた。
本研究では, スプラインノットのレンズによるカンの挙動を解析し, B-スプライン系カンの結び目数に対する上下境界を導出する。
既存の制約に対処するため,標準マルチ層パーセプトロン(MLP)のトレーニング可能なパラメータスケールに適合するトレーニング可能なパラメータ数を削減しつつ,元のkanの性能を向上させる新しいフリーノット・カンを提案する。
さらに,学習可能なスプラインのC^2$連続性を確保するための新たなトレーニング戦略を導入し,元のkanよりもスムーズなアクティベーションを実現し,レンジ展開によるトレーニング安定性を向上させる。
提案手法は,画像,テキスト,時系列,マルチモーダル,関数近似といった領域にまたがる8つのデータセットに対して総合的に評価する。
その結果,kan-based network の有効性と提案手法の有効性が示された。
関連論文リスト
- Low Tensor-Rank Adaptation of Kolmogorov--Arnold Networks [70.06682043272377]
コルモゴロフ-アルノルドネットワーク(KAN)は、様々な領域における多層知覚(MLP)の代替としての可能性を示した。
微調整カンのためのローテンソルランク適応(LoTRA)を開発した。
微調整カンによる様々な偏微分方程式(PDE)を効率的に解くためのLoTRAの適用について検討する。
論文 参考訳(メタデータ) (2025-02-10T04:57:07Z) - Reimagining Linear Probing: Kolmogorov-Arnold Networks in Transfer Learning [18.69601183838834]
Kolmogorov-Arnold Networks (KAN) は、伝達学習における従来の線形探索手法の拡張である。
Kanは、従来の線形探索よりも一貫して優れており、精度と一般化の大幅な改善を実現している。
論文 参考訳(メタデータ) (2024-09-12T05:36:40Z) - Kolmogorov-Smirnov GAN [52.36633001046723]
我々は、KSGAN(Kolmogorov-Smirnov Generative Adversarial Network)という新しい深層生成モデルを提案する。
既存のアプローチとは異なり、KSGANはKS距離の最小化として学習プロセスを定式化している。
論文 参考訳(メタデータ) (2024-06-28T14:30:14Z) - Smooth Kolmogorov Arnold networks enabling structural knowledge representation [0.0]
Kolmogorov-Arnold Networks (KAN) は、従来のマルチ層パーセプトロン(MLP)アーキテクチャに代わる、効率的かつ解釈可能な代替手段を提供する。
固有の構造的知識を活用することで、カンは訓練に必要なデータを減らすことができ、幻覚的予測を発生させるリスクを軽減することができる。
論文 参考訳(メタデータ) (2024-05-18T15:27:14Z) - Continual Learning via Sequential Function-Space Variational Inference [65.96686740015902]
連続学習を逐次関数空間変動推論として定式化した目的を提案する。
ニューラルネットワークの予測を直接正規化する目的と比較して、提案した目的はより柔軟な変動分布を可能にする。
タスクシーケンスの範囲で、逐次関数空間変動推論によってトレーニングされたニューラルネットワークは、関連する手法でトレーニングされたネットワークよりも予測精度が良いことを実証した。
論文 参考訳(メタデータ) (2023-12-28T18:44:32Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
しきい値アクティベートを伴うディープニューラルネットワークの重み劣化正規化学習問題について検討した。
ネットワークの特定の層でデータセットを破砕できる場合に、簡易な凸最適化の定式化を導出する。
論文 参考訳(メタデータ) (2023-03-06T18:59:13Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
我々は、暗黙的ニューラルネットワーク(INN)の堅牢性を保証するために、区間到達可能性分析を用いる。
INNは暗黙の方程式をレイヤとして使用する暗黙の学習モデルのクラスである。
提案手法は, INNに最先端の区間境界伝搬法を適用するよりも, 少なくとも, 一般的には, 有効であることを示す。
論文 参考訳(メタデータ) (2022-04-01T03:31:27Z) - FFNB: Forgetting-Free Neural Blocks for Deep Continual Visual Learning [14.924672048447338]
我々は、新しい忘れのないニューラルブロック(FFNB)に基づく連続学習のための動的ネットワークアーキテクチャを考案する。
FFNB機能を新しいタスクでトレーニングするには、以前のタスクのnull-スペースのパラメータを制約する新しいプロシージャを使用する。
論文 参考訳(メタデータ) (2021-11-22T17:23:34Z) - Spline parameterization of neural network controls for deep learning [0.0]
我々は、ニューラルネットワークの訓練可能なパラメータである係数の固定数のBスプライン基底関数を選択する。
スプラインベースのニューラルネットワークがハイパーパラメータに対する学習問題の堅牢性を高めることを数値的に示す。
論文 参考訳(メタデータ) (2021-02-27T19:35:45Z) - Continual Learning in Recurrent Neural Networks [67.05499844830231]
リカレントニューラルネットワーク(RNN)を用いた逐次データ処理における連続学習手法の有効性を評価する。
RNNに弾性重み強化などの重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重み-重
そこで本研究では,重み付け手法の性能が処理シーケンスの長さに直接的な影響を受けず,むしろ高動作メモリ要求の影響を受けていることを示す。
論文 参考訳(メタデータ) (2020-06-22T10:05:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。