論文の概要: Efficient Few-Shot Medical Image Analysis via Hierarchical Contrastive Vision-Language Learning
- arxiv url: http://arxiv.org/abs/2501.09294v1
- Date: Thu, 16 Jan 2025 05:01:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-17 15:11:40.049906
- Title: Efficient Few-Shot Medical Image Analysis via Hierarchical Contrastive Vision-Language Learning
- Title(参考訳): 階層型コントラストビジョンランゲージ学習による医用画像解析の効率化
- Authors: Harrison Fuller, Fernando Gabriela Garcia, Victor Flores,
- Abstract要約: 医用画像解析のための階層的コントラストアライメント(HiCA)を用いた適応型視覚言語ファインタニングを提案する。
HiCAは、ドメイン固有の事前学習と階層的コントラスト学習を組み合わせて、視覚的およびテキスト的表現を複数のレベルで整列させる。
我々はChest X-rayとBreast Ultrasoundという2つのベンチマークデータセットに対するアプローチを評価した。
- 参考スコア(独自算出の注目度): 44.99833362998488
- License:
- Abstract: Few-shot learning in medical image classification presents a significant challenge due to the limited availability of annotated data and the complex nature of medical imagery. In this work, we propose Adaptive Vision-Language Fine-tuning with Hierarchical Contrastive Alignment (HiCA), a novel framework that leverages the capabilities of Large Vision-Language Models (LVLMs) for medical image analysis. HiCA introduces a two-stage fine-tuning strategy, combining domain-specific pretraining and hierarchical contrastive learning to align visual and textual representations at multiple levels. We evaluate our approach on two benchmark datasets, Chest X-ray and Breast Ultrasound, achieving state-of-the-art performance in both few-shot and zero-shot settings. Further analyses demonstrate the robustness, generalizability, and interpretability of our method, with substantial improvements in performance compared to existing baselines. Our work highlights the potential of hierarchical contrastive strategies in adapting LVLMs to the unique challenges of medical imaging tasks.
- Abstract(参考訳): 医用画像分類における画像学習は,注釈付きデータの不足と医用画像の複雑な性質から,重要な課題となっている。
本研究では、医用画像解析にLVLM(Large Vision-Language Models)の機能を利用する新しいフレームワークであるHiCA(Adaptive Vision-Language Fine-tuning with Hierarchical Contrastive Alignment)を提案する。
HiCAは2段階の微調整戦略を導入し、ドメイン固有の事前訓練と階層的なコントラスト学習を組み合わせることで、視覚的およびテキスト的表現を複数のレベルで整列させる。
我々は、Chest X-rayとBreast Ultrasoundという2つのベンチマークデータセットに対するアプローチを評価し、数ショットとゼロショットの両方で最先端のパフォーマンスを実現した。
さらに,本手法のロバスト性,一般化性,解釈性について検討し,既存のベースラインに比べて性能が大幅に向上した。
本研究は,LVLMを医用画像タスクの独特な課題に適応する上で,階層的コントラスト戦略の可能性を強調した。
関連論文リスト
- Knowledge-grounded Adaptation Strategy for Vision-language Models: Building Unique Case-set for Screening Mammograms for Residents Training [5.819704618007536]
自然画像とテキストペアに事前訓練された視覚言語モデル(VLM)は、医学的文脈に適用した場合、大きな障壁となる。
本稿では, 選択的サンプリング法と強陰性マイニング法を用いて, VLMを医療領域に適応させるフレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-30T04:04:36Z) - Hierarchical Text-to-Vision Self Supervised Alignment for Improved Histopathology Representation Learning [64.1316997189396]
病理組織像のための新しい言語型自己教師学習フレームワーク,階層型言語型自己監督(HLSS)を提案する。
その結果,OpenSRH と TCGA の2つの医用画像ベンチマークにおいて,最先端の性能が得られた。
論文 参考訳(メタデータ) (2024-03-21T17:58:56Z) - Robust and Interpretable Medical Image Classifiers via Concept
Bottleneck Models [49.95603725998561]
本稿では,自然言語の概念を用いた堅牢で解釈可能な医用画像分類器を構築するための新しいパラダイムを提案する。
具体的には、まず臨床概念をGPT-4から検索し、次に視覚言語モデルを用いて潜在画像の特徴を明示的な概念に変換する。
論文 参考訳(メタデータ) (2023-10-04T21:57:09Z) - Masked Vision and Language Pre-training with Unimodal and Multimodal
Contrastive Losses for Medical Visual Question Answering [7.669872220702526]
本稿では,入力画像とテキストの非モーダル・マルチモーダル特徴表現を学習する,新しい自己教師型アプローチを提案する。
提案手法は,3つの医用VQAデータセット上での最先端(SOTA)性能を実現する。
論文 参考訳(メタデータ) (2023-07-11T15:00:11Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
LVM-Medは、大規模医療データセットに基づいてトレーニングされた、最初のディープネットワークファミリーである。
55の公開データセットから約13万の医療画像を収集しました。
LVM-Medは、多くの最先端の教師付き、自己監督型、基礎モデルよりも経験的に優れている。
論文 参考訳(メタデータ) (2023-06-20T22:21:34Z) - Vision-Language Modelling For Radiological Imaging and Reports In The
Low Data Regime [70.04389979779195]
本稿では,視覚および言語入力を共通空間に埋め込んだ医用視覚言語モデル(VLM)について検討する。
本稿では,新しい画像領域やテキスト領域への汎用事前学習モデルの適用など,低データ性能向上のためのいくつかの候補手法について検討する。
テキスト・ツー・イメージ検索をベンチマークとして,2つの胸部X線および放射線学的報告を用いた可変サイズのトレーニングデータセットを用いて,これらの手法の性能評価を行った。
論文 参考訳(メタデータ) (2023-03-30T18:20:00Z) - Learning to Exploit Temporal Structure for Biomedical Vision-Language
Processing [53.89917396428747]
視覚言語処理における自己教師あり学習は、画像とテキストのモダリティのセマンティックアライメントを利用する。
トレーニングと微調整の両方で利用できる場合、事前のイメージとレポートを明示的に説明します。
我々のアプローチはBioViL-Tと呼ばれ、テキストモデルと共同で訓練されたCNN-Transformerハイブリッドマルチイメージエンコーダを使用する。
論文 参考訳(メタデータ) (2023-01-11T16:35:33Z) - LMFLOSS: A Hybrid Loss For Imbalanced Medical Image Classification [2.4866930218890837]
医用画像データセットにおけるクラス不均衡問題を軽減するために,Large Margin aware(LMF)損失という新しいフレームワークを提案する。
この枠組みは、マイノリティクラスに対してより広いマージンを課すことにより、両方の損失関数の明確な特性を利用する。
提案手法が他のベースライン法より一貫して優れていることを示す実証的証拠を提供する。
論文 参考訳(メタデータ) (2022-12-24T14:19:44Z) - UnICLAM:Contrastive Representation Learning with Adversarial Masking for
Unified and Interpretable Medical Vision Question Answering [7.2486693553383805]
現在のメディカルVQAモデルは、視覚とテクスチャエンコーダを2つの別々の空間に配置することで、クロスモーダル表現を学習する。
本稿では,Unified and Interpretable Medical-VQAモデルであるUnICLAMを提案する。
VQA-RADとSLAKEの公開ベンチマークの実験結果は、UnICLAMが既存の11の最先端の医療VQAモデルより優れていることを示している。
論文 参考訳(メタデータ) (2022-12-21T02:48:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。