Domain-conditioned and Temporal-guided Diffusion Modeling for Accelerated Dynamic MRI Reconstruction
- URL: http://arxiv.org/abs/2501.09305v1
- Date: Thu, 16 Jan 2025 05:39:50 GMT
- Title: Domain-conditioned and Temporal-guided Diffusion Modeling for Accelerated Dynamic MRI Reconstruction
- Authors: Liping Zhang, Iris Yuwen Zhou, Sydney B. Montesi, Li Feng, Fang Liu,
- Abstract summary: The dDiMo framework integrates temporal information from time-resolved dimensions.
The proposed model was tested on two types of MRI data: cardiac-acquired multi-coil MRI and Golden-Radial-Angle-acquired multicoil free-acquired MRI.
- Score: 5.116849432626762
- License:
- Abstract: Purpose: To propose a domain-conditioned and temporal-guided diffusion modeling method, termed dynamic Diffusion Modeling (dDiMo), for accelerated dynamic MRI reconstruction, enabling diffusion process to characterize spatiotemporal information for time-resolved multi-coil Cartesian and non-Cartesian data. Methods: The dDiMo framework integrates temporal information from time-resolved dimensions, allowing for the concurrent capture of intra-frame spatial features and inter-frame temporal dynamics in diffusion modeling. It employs additional spatiotemporal ($x$-$t$) and self-consistent frequency-temporal ($k$-$t$) priors to guide the diffusion process. This approach ensures precise temporal alignment and enhances the recovery of fine image details. To facilitate a smooth diffusion process, the nonlinear conjugate gradient algorithm is utilized during the reverse diffusion steps. The proposed model was tested on two types of MRI data: Cartesian-acquired multi-coil cardiac MRI and Golden-Angle-Radial-acquired multi-coil free-breathing lung MRI, across various undersampling rates. Results: dDiMo achieved high-quality reconstructions at various acceleration factors, demonstrating improved temporal alignment and structural recovery compared to other competitive reconstruction methods, both qualitatively and quantitatively. This proposed diffusion framework exhibited robust performance in handling both Cartesian and non-Cartesian acquisitions, effectively reconstructing dynamic datasets in cardiac and lung MRI under different imaging conditions. Conclusion: This study introduces a novel diffusion modeling method for dynamic MRI reconstruction.
Related papers
- Zero-shot Dynamic MRI Reconstruction with Global-to-local Diffusion Model [17.375064910924717]
We propose a dynamic MRI reconstruction method based on a time-interleaved acquisition scheme, termed the Glob-al-to-local Diffusion Model.
The proposed method performs well in terms of noise reduction and preservation, achieving reconstruction quality comparable to that of supervised approaches.
arXiv Detail & Related papers (2024-11-06T07:40:27Z) - LDPM: Towards undersampled MRI reconstruction with MR-VAE and Latent Diffusion Prior [2.3007720628527104]
A Latent Diffusion Prior based undersampled MRI reconstruction (LDPM) method is proposed.
A sketcher module is utilized to provide appropriate control and balance the quality and fidelity of the reconstructed MR images.
A VAE adapted for MRI tasks (MR-VAE) is explored, which can serve as the backbone for future MR-related tasks.
arXiv Detail & Related papers (2024-11-05T09:51:59Z) - NeuroPictor: Refining fMRI-to-Image Reconstruction via Multi-individual Pretraining and Multi-level Modulation [55.51412454263856]
This paper proposes to directly modulate the generation process of diffusion models using fMRI signals.
By training with about 67,000 fMRI-image pairs from various individuals, our model enjoys superior fMRI-to-image decoding capacity.
arXiv Detail & Related papers (2024-03-27T02:42:52Z) - Diffusion Modeling with Domain-conditioned Prior Guidance for
Accelerated MRI and qMRI Reconstruction [3.083408283778178]
This study introduces a novel approach for image reconstruction based on a diffusion model conditioned on the native data domain.
The proposed method demonstrates a significant promise, particularly for reconstructing images at high acceleration factors.
arXiv Detail & Related papers (2023-09-02T01:33:50Z) - Optimizing Sampling Patterns for Compressed Sensing MRI with Diffusion
Generative Models [75.52575380824051]
We present a learning method to optimize sub-sampling patterns for compressed sensing multi-coil MRI.
We use a single-step reconstruction based on the posterior mean estimate given by the diffusion model and the MRI measurement process.
Our method requires as few as five training images to learn effective sampling patterns.
arXiv Detail & Related papers (2023-06-05T22:09:06Z) - SPIRiT-Diffusion: Self-Consistency Driven Diffusion Model for Accelerated MRI [14.545736786515837]
We introduce SPIRiT-Diffusion, a diffusion model for k-space inspired by the iterative self-consistent SPIRiT method.
We evaluate the proposed SPIRiT-Diffusion method using a 3D joint intracranial and carotid vessel wall imaging dataset.
arXiv Detail & Related papers (2023-04-11T08:43:52Z) - High-Frequency Space Diffusion Models for Accelerated MRI [7.985113617260289]
Diffusion models with continuous differential equations (SDEs) have shown superior performances in image generation.
We propose a novel SDE tailored specifically for magnetic resonance (MR) reconstruction with the diffusion process in high-frequency space.
This approach ensures determinism in the fully sampled low-frequency regions and accelerates the sampling procedure of reverse diffusion.
arXiv Detail & Related papers (2022-08-10T14:04:20Z) - Diffusion Deformable Model for 4D Temporal Medical Image Generation [47.03842361418344]
Temporal volume images with 3D+t (4D) information are often used in medical imaging to statistically analyze temporal dynamics or capture disease progression.
We present a novel deep learning model that generates intermediate temporal volumes between source and target volumes.
arXiv Detail & Related papers (2022-06-27T13:37:57Z) - Towards performant and reliable undersampled MR reconstruction via
diffusion model sampling [67.73698021297022]
DiffuseRecon is a novel diffusion model-based MR reconstruction method.
It guides the generation process based on the observed signals.
It does not require additional training on specific acceleration factors.
arXiv Detail & Related papers (2022-03-08T02:25:38Z) - Dynamic Mode Decomposition in Adaptive Mesh Refinement and Coarsening
Simulations [58.720142291102135]
Dynamic Mode Decomposition (DMD) is a powerful data-driven method used to extract coherent schemes.
This paper proposes a strategy to enable DMD to extract from observations with different mesh topologies and dimensions.
arXiv Detail & Related papers (2021-04-28T22:14:25Z) - Multifold Acceleration of Diffusion MRI via Slice-Interleaved Diffusion
Encoding (SIDE) [50.65891535040752]
We propose a diffusion encoding scheme, called Slice-Interleaved Diffusion.
SIDE, that interleaves each diffusion-weighted (DW) image volume with slices encoded with different diffusion gradients.
We also present a method based on deep learning for effective reconstruction of DW images from the highly slice-undersampled data.
arXiv Detail & Related papers (2020-02-25T14:48:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.