論文の概要: Modeling Language for Scenario Development of Autonomous Driving Systems
- arxiv url: http://arxiv.org/abs/2501.09319v1
- Date: Thu, 16 Jan 2025 06:19:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-17 15:11:18.946396
- Title: Modeling Language for Scenario Development of Autonomous Driving Systems
- Title(参考訳): 自動運転システムのシナリオ開発のためのモデリング言語
- Authors: Toshiaki Aoki, Takashi Tomita, Tatsuji Kawai, Daisuke Kawakami, Nobuo Chida,
- Abstract要約: 本研究は,自動車位置図 (CPD) という表記を導入した。
CPDは多数のシナリオの簡潔な表現を可能にし、シナリオ分析と設計に特に適している。
シナリオ列挙のためのツールが実装され、典型的な車の挙動と国際標準の両方で実験が行われる。
- 参考スコア(独自算出の注目度): 1.0625549557437528
- License:
- Abstract: Autonomous driving systems are typically verified based on scenarios. To represent the positions and movements of cars in these scenarios, diagrams that utilize icons are typically employed. However, the interpretation of such diagrams is typically ambiguous, which can lead to misunderstandings among users, making them unsuitable for the development of high-reliability systems. To address this issue, this study introduces a notation called the car position diagram (CPD). The CPD allows for the concise representation of numerous scenarios and is particularly suitable for scenario analysis and design. In addition, we propose a method for converting CPD-based models into propositional logic formulas and enumerating all scenarios using a SAT solver. A tool for scenario enumeration is implemented, and experiments are conducted on both typical car behaviors and international standards. The results demonstrate that the CPD enables the concise description of numerous scenarios, thereby confirming the effectiveness of our scenario analysis method.
- Abstract(参考訳): 自律運転システムは一般的にシナリオに基づいて検証される。
これらのシナリオにおける車の位置と動きを表現するために、アイコンを利用した図が典型的に用いられる。
しかし、そのようなダイアグラムの解釈は一般に曖昧であり、ユーザ間の誤解を招く可能性があるため、信頼性の高いシステムの開発には適さない。
この問題に対処するため,自動車位置図 (CPD) という表記を導入した。
CPDは多数のシナリオの簡潔な表現を可能にし、シナリオ分析と設計に特に適している。
さらに,CPDに基づくモデルを命題論理式に変換し,SATソルバを用いてすべてのシナリオを列挙する手法を提案する。
シナリオ列挙のためのツールが実装され、典型的な車の挙動と国際標準の両方で実験が行われる。
その結果,CDDは多数のシナリオの簡潔な記述を可能にし,シナリオ解析手法の有効性を確認した。
関連論文リスト
- Generating Out-Of-Distribution Scenarios Using Language Models [58.47597351184034]
大規模言語モデル(LLM)は自動運転において有望であることを示している。
本稿では,多様なOF-Distribution(OOD)駆動シナリオを生成するためのフレームワークを提案する。
我々は、広範囲なシミュレーションを通じてフレームワークを評価し、新しい"OOD-ness"メトリクスを導入する。
論文 参考訳(メタデータ) (2024-11-25T16:38:17Z) - LeGEND: A Top-Down Approach to Scenario Generation of Autonomous Driving Systems Assisted by Large Language Models [9.841914333647631]
シナリオ生成のトップダウン方式を特徴とするLeGENDを提案する。
最初は抽象的な機能シナリオから始まり、その後論理的で具体的なシナリオへと下降する。
形式的に記述できる論理的シナリオとは異なり、関数的シナリオは自然言語で文書化されることが多い。
論文 参考訳(メタデータ) (2024-09-16T08:01:21Z) - SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries [94.84458417662407]
制御可能なクローズドループ安全クリティカルシミュレーションフレームワークであるSAFE-SIMを紹介する。
提案手法は,1)現実の環境を深く反映した現実的な長距離安全クリティカルシナリオの生成,2)より包括的でインタラクティブな評価のための制御可能な敵行動の提供,の2つの利点をもたらす。
複数のプランナにまたがるnuScenesとnuPlanデータセットを使用して、我々のフレームワークを実証的に検証し、リアリズムと制御性の両方の改善を実証した。
論文 参考訳(メタデータ) (2023-12-31T04:14:43Z) - Tree-Based Scenario Classification: A Formal Framework for Coverage
Analysis on Test Drives of Autonomous Vehicles [0.0]
シナリオベースのテストでは、関連する(運転)シナリオがテストの基礎になります。
シナリオの集合を分類し、記録されたテストドライブにおけるこれらのシナリオのカバレッジを測定するというオープンな課題に対処する。
論文 参考訳(メタデータ) (2023-07-11T08:30:57Z) - Clustering-based Criticality Analysis for Testing of Automated Driving
Systems [0.18416014644193066]
本稿では,1つの論理シナリオから具体的なシナリオをクラスタリングすることで設定したシナリオを削減するという目標に焦点をあてる。
クラスタリング技術を利用することで、冗長で非関心なシナリオを識別および排除することが可能になり、典型的なシナリオセットとなる。
論文 参考訳(メタデータ) (2023-06-22T08:36:20Z) - UMSE: Unified Multi-scenario Summarization Evaluation [52.60867881867428]
要約品質評価は、テキスト要約における非自明なタスクである。
統一多シナリオ要約評価モデル(UMSE)を提案する。
UMSEは3つの評価シナリオで使用できる能力に係わる最初の統合要約評価フレームワークである。
論文 参考訳(メタデータ) (2023-05-26T12:54:44Z) - Vectorized Scenario Description and Motion Prediction for Scenario-Based
Testing [2.07180164747172]
本稿では,道路形状と車両軌跡によって定義されたベクトル化されたシナリオ記述を提案する。
この形式のデータは3つのシナリオに対して生成され、マージされ、モーション予測モデルであるVectorNetのトレーニングに使用される。
論文 参考訳(メタデータ) (2023-02-02T15:32:25Z) - Generating Useful Accident-Prone Driving Scenarios via a Learned Traffic
Prior [135.78858513845233]
STRIVEは、特定のプランナーが衝突のような望ましくない振る舞いを発生させるような、困難なシナリオを自動的に生成する手法である。
シナリオの妥当性を維持するために、キーとなるアイデアは、グラフベースの条件付きVAEという形で、学習した交通運動モデルを活用することである。
その後の最適化は、シナリオの"解決"を見つけるために使用され、与えられたプランナーを改善するのに有効である。
論文 参考訳(メタデータ) (2021-12-09T18:03:27Z) - Addressing the IEEE AV Test Challenge with Scenic and VerifAI [10.221093591444731]
本稿では,IEEE AVテストチャレンジのシミュレーションにおいて,自律走行車(AV)のテストに対する我々の公式なアプローチを要約する。
我々は,知的サイバー物理システムのための形式駆動型シミュレーションに関するこれまでの研究を生かした,系統的なテストフレームワークを実証する。
論文 参考訳(メタデータ) (2021-08-20T04:51:27Z) - Generating and Characterizing Scenarios for Safety Testing of Autonomous
Vehicles [86.9067793493874]
最先端運転シミュレータを用いて,テストシナリオを特徴付け,生成するための効率的なメカニズムを提案する。
次世代シミュレーション(NGSIM)プロジェクトにおける実運転データの特徴付けに本手法を用いる。
事故回避の複雑さに基づいてメトリクスを定義してシナリオをランク付けし、事故発生の可能性を最小限に抑えるための洞察を提供します。
論文 参考訳(メタデータ) (2021-03-12T17:00:23Z) - Generalizing Decision Making for Automated Driving with an Invariant
Environment Representation using Deep Reinforcement Learning [55.41644538483948]
現在のアプローチは、トレーニングデータを超えてよく一般化されないか、または可変数のトラフィック参加者を考慮することができない。
本研究では,エゴ車の観点から不変環境表現を提案する。
この抽象化により,エージェントが未確認シナリオに対してうまく一般化できることが示される。
論文 参考訳(メタデータ) (2021-02-12T20:37:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。