Identification of Traditional Medicinal Plant Leaves Using an effective Deep Learning model and Self-Curated Dataset
- URL: http://arxiv.org/abs/2501.09363v1
- Date: Thu, 16 Jan 2025 08:18:03 GMT
- Title: Identification of Traditional Medicinal Plant Leaves Using an effective Deep Learning model and Self-Curated Dataset
- Authors: Deepjyoti Chetia, Sanjib Kr Kalita, Prof Partha Pratim Baruah, Debasish Dutta, Tanaz Akhter,
- Abstract summary: The proposed model is a custom convolutional neural network (CNN) architecture with 6 convolution layers, max-pooling layers, and dense layers.
The model was tested on three different datasets named Indian Medicinal Leaves Image dataset,MED117 Medicinal Plant Leaf dataset, and the self-curated dataset by the authors.
- Score: 0.0
- License:
- Abstract: Medicinal plants have been a key component in producing traditional and modern medicines, especially in the field of Ayurveda, an ancient Indian medical system. Producing these medicines and collecting and extracting the right plant is a crucial step due to the visually similar nature of some plants. The extraction of these plants from nonmedicinal plants requires human expert intervention. To solve the issue of accurate plant identification and reduce the need for a human expert in the collection process; employing computer vision methods will be efficient and beneficial. In this paper, we have proposed a model that solves such issues. The proposed model is a custom convolutional neural network (CNN) architecture with 6 convolution layers, max-pooling layers, and dense layers. The model was tested on three different datasets named Indian Medicinal Leaves Image Dataset,MED117 Medicinal Plant Leaf Dataset, and the self-curated dataset by the authors. The proposed model achieved respective accuracies of 99.5%, 98.4%, and 99.7% using various optimizers including Adam, RMSprop, and SGD with momentum.
Related papers
- A Novel Feature Extraction Model for the Detection of Plant Disease from Leaf Images in Low Computational Devices [2.1990652930491854]
The proposed approach integrates various types of Deep Learning techniques to extract robust and discriminative features from leaf images.
The dataset contains 10,000 leaf photos from ten classes of tomato illnesses and one class of healthy leaves.
AlexNet has an accuracy score of 87%, with the benefit of being quick and lightweight, making it appropriate for use on embedded systems.
arXiv Detail & Related papers (2024-10-01T19:32:45Z) - Early and Accurate Detection of Tomato Leaf Diseases Using TomFormer [0.3169023552218211]
This paper introduces a transformer-based model called TomFormer for the purpose of tomato leaf disease detection.
We present a novel approach for detecting tomato leaf diseases by employing a fusion model that combines a visual transformer and a convolutional neural network.
arXiv Detail & Related papers (2023-12-26T20:47:23Z) - IndoHerb: Indonesia Medicinal Plants Recognition using Transfer Learning and Deep Learning [1.8499314936771563]
This research addresses the task of classifying Indonesian herbal plants through the implementation of Convolutional Neural Networks (CNN)
We conducted rigorous data preprocessing, and classification utilizing transfer learning methodologies with five distinct models.
Our comprehensive analysis revealed that ConvNeXt achieved the highest accuracy, standing at an impressive 92.5%.
arXiv Detail & Related papers (2023-08-03T08:16:55Z) - Few-Shot Learning Enables Population-Scale Analysis of Leaf Traits in
Populus trichocarpa [1.9089478605920305]
This work is designed to provide the plant phenotyping community with (i) methods for fast and accurate image-based feature extraction that require minimal training data, and (ii) a new population-scale data set, including 68 different leaf phenotypes, for domain scientists and machine learning researchers.
All of the few-shot learning code, data, and results are made publicly available.
arXiv Detail & Related papers (2023-01-24T23:40:01Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
Drug combination therapy is a well-established strategy for disease treatment with better effectiveness and less safety degradation.
Deep learning models have emerged as an efficient way to discover synergistic combinations.
Our framework achieves state-of-the-art results in comparison with other deep learning-based methods.
arXiv Detail & Related papers (2023-01-14T15:07:43Z) - Semantic Image Segmentation with Deep Learning for Vine Leaf Phenotyping [59.0626764544669]
In this study, we use Deep Learning methods to semantically segment grapevine leaves images in order to develop an automated object detection system for leaf phenotyping.
Our work contributes to plant lifecycle monitoring through which dynamic traits such as growth and development can be captured and quantified.
arXiv Detail & Related papers (2022-10-24T14:37:09Z) - Soft-Label Anonymous Gastric X-ray Image Distillation [49.24576562557866]
This paper presents a soft-label anonymous gastric X-ray image distillation method based on a gradient descent approach.
Experimental results show that the proposed method can not only effectively compress the medical dataset but also anonymize medical images to protect the patient's private information.
arXiv Detail & Related papers (2021-04-07T02:04:12Z) - Unassisted Noise Reduction of Chemical Reaction Data Sets [59.127921057012564]
We propose a machine learning-based, unassisted approach to remove chemically wrong entries from data sets.
Our results show an improved prediction quality for models trained on the cleaned and balanced data sets.
arXiv Detail & Related papers (2021-02-02T09:34:34Z) - Improved Neural Network based Plant Diseases Identification [0.0]
The agriculture sector is essential for every country because it provides a basic income to a large number of people and food as well, which is a fundamental requirement to survive on this planet.
Due to improper knowledge of plant diseases, farmers use fertilizers in excess, which ultimately degrade the quality of food.
In today time, Image processing is used to recognize and catalog plant diseases using the lesion region of plant leaf.
arXiv Detail & Related papers (2021-01-01T11:49:56Z) - Two-View Fine-grained Classification of Plant Species [66.75915278733197]
We propose a novel method based on a two-view leaf image representation and a hierarchical classification strategy for fine-grained recognition of plant species.
A deep metric based on Siamese convolutional neural networks is used to reduce the dependence on a large number of training samples and make the method scalable to new plant species.
arXiv Detail & Related papers (2020-05-18T21:57:47Z) - Ensemble Transfer Learning for the Prediction of Anti-Cancer Drug
Response [49.86828302591469]
In this paper, we apply transfer learning to the prediction of anti-cancer drug response.
We apply the classic transfer learning framework that trains a prediction model on the source dataset and refines it on the target dataset.
The ensemble transfer learning pipeline is implemented using LightGBM and two deep neural network (DNN) models with different architectures.
arXiv Detail & Related papers (2020-05-13T20:29:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.