IndoHerb: Indonesia Medicinal Plants Recognition using Transfer Learning and Deep Learning
- URL: http://arxiv.org/abs/2308.01604v2
- Date: Sun, 9 Jun 2024 06:41:55 GMT
- Title: IndoHerb: Indonesia Medicinal Plants Recognition using Transfer Learning and Deep Learning
- Authors: Muhammad Salman Ikrar Musyaffa, Novanto Yudistira, Muhammad Arif Rahman, Jati Batoro,
- Abstract summary: This research addresses the task of classifying Indonesian herbal plants through the implementation of Convolutional Neural Networks (CNN)
We conducted rigorous data preprocessing, and classification utilizing transfer learning methodologies with five distinct models.
Our comprehensive analysis revealed that ConvNeXt achieved the highest accuracy, standing at an impressive 92.5%.
- Score: 1.8499314936771563
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The rich diversity of herbal plants in Indonesia holds immense potential as alternative resources for traditional healing and ethnobotanical practices. However, the dwindling recognition of herbal plants due to modernization poses a significant challenge in preserving this valuable heritage. The accurate identification of these plants is crucial for the continuity of traditional practices and the utilization of their nutritional benefits. Nevertheless, the manual identification of herbal plants remains a time-consuming task, demanding expert knowledge and meticulous examination of plant characteristics. In response, the application of computer vision emerges as a promising solution to facilitate the efficient identification of herbal plants. This research addresses the task of classifying Indonesian herbal plants through the implementation of transfer learning of Convolutional Neural Networks (CNN). To support our study, we curated an extensive dataset of herbal plant images from Indonesia with careful manual selection. Subsequently, we conducted rigorous data preprocessing, and classification utilizing transfer learning methodologies with five distinct models: ResNet, DenseNet, VGG, ConvNeXt, and Swin Transformer. Our comprehensive analysis revealed that ConvNeXt achieved the highest accuracy, standing at an impressive 92.5%. Additionally, we conducted testing using a scratch model, resulting in an accuracy of 53.9%. The experimental setup featured essential hyperparameters, including the ExponentialLR scheduler with a gamma value of 0.9, a learning rate of 0.001, the Cross-Entropy Loss function, the Adam optimizer, and a training epoch count of 50. This study's outcomes offer valuable insights and practical implications for the automated identification of Indonesian medicinal plants.
Related papers
- Enhancing Plant Disease Detection: A Novel CNN-Based Approach with Tensor Subspace Learning and HOWSVD-MD [3.285994579445155]
This paper introduces a cutting-edge technique for the detection and classification of tomato leaf diseases.
We propose a sophisticated approach within the domain of subspace learning, known as Higher-Order Whitened Singular Value Decomposition.
The efficacy of this innovative method was rigorously tested through comprehensive experiments on two distinct datasets.
arXiv Detail & Related papers (2024-05-30T13:46:56Z) - Physical formula enhanced multi-task learning for pharmacokinetics prediction [54.13787789006417]
A major challenge for AI-driven drug discovery is the scarcity of high-quality data.
We develop a formula enhanced mul-ti-task learning (PEMAL) method that predicts four key parameters of pharmacokinetics simultaneously.
Our experiments reveal that PEMAL significantly lowers the data demand, compared to typical Graph Neural Networks.
arXiv Detail & Related papers (2024-04-16T07:42:55Z) - Crop Disease Classification using Support Vector Machines with Green
Chromatic Coordinate (GCC) and Attention based feature extraction for IoT
based Smart Agricultural Applications [0.0]
Plant diseases can negatively affect leaves during agricultural cultivation, resulting in significant losses in crop output and economic value.
Various machine learning (ML) as well as deep learning (DL) algorithms have been created & studied for the identification of plant disease detection.
This article presents a novel classification method that builds on prior work by utilising attention-based feature extraction, RGB channel-based chromatic analysis, Support Vector Machines (SVM) for improved performance.
arXiv Detail & Related papers (2023-11-01T10:44:49Z) - Semantic Image Segmentation with Deep Learning for Vine Leaf Phenotyping [59.0626764544669]
In this study, we use Deep Learning methods to semantically segment grapevine leaves images in order to develop an automated object detection system for leaf phenotyping.
Our work contributes to plant lifecycle monitoring through which dynamic traits such as growth and development can be captured and quantified.
arXiv Detail & Related papers (2022-10-24T14:37:09Z) - Explainable vision transformer enabled convolutional neural network for
plant disease identification: PlantXViT [11.623005206620498]
Plant diseases are the primary cause of crop losses globally, with an impact on the world economy.
In this study, a Vision Transformer enabled Convolutional Neural Network model called "PlantXViT" is proposed for plant disease identification.
The proposed model has a lightweight structure with only 0.8 million trainable parameters, which makes it suitable for IoT-based smart agriculture services.
arXiv Detail & Related papers (2022-07-16T12:05:06Z) - Deep metric learning improves lab of origin prediction of genetically
engineered plasmids [63.05016513788047]
Genetic engineering attribution (GEA) is the ability to make sequence-lab associations.
We propose a method, based on metric learning, that ranks the most likely labs-of-origin.
We are able to extract key signatures in plasmid sequences for particular labs, allowing for an interpretable examination of the model's outputs.
arXiv Detail & Related papers (2021-11-24T16:29:03Z) - Potato Crop Stress Identification in Aerial Images using Deep
Learning-based Object Detection [60.83360138070649]
The paper presents an approach for analyzing aerial images of a potato crop using deep neural networks.
The main objective is to demonstrate automated spatial recognition of a healthy versus stressed crop at a plant level.
Experimental validation demonstrated the ability for distinguishing healthy and stressed plants in field images, achieving an average Dice coefficient of 0.74.
arXiv Detail & Related papers (2021-06-14T21:57:40Z) - Improved Neural Network based Plant Diseases Identification [0.0]
The agriculture sector is essential for every country because it provides a basic income to a large number of people and food as well, which is a fundamental requirement to survive on this planet.
Due to improper knowledge of plant diseases, farmers use fertilizers in excess, which ultimately degrade the quality of food.
In today time, Image processing is used to recognize and catalog plant diseases using the lesion region of plant leaf.
arXiv Detail & Related papers (2021-01-01T11:49:56Z) - A CNN Approach to Simultaneously Count Plants and Detect Plantation-Rows
from UAV Imagery [56.10033255997329]
We propose a novel deep learning method based on a Convolutional Neural Network (CNN)
It simultaneously detects and geolocates plantation-rows while counting its plants considering highly-dense plantation configurations.
The proposed method achieved state-of-the-art performance for counting and geolocating plants and plant-rows in UAV images from different types of crops.
arXiv Detail & Related papers (2020-12-31T18:51:17Z) - Real-time Plant Health Assessment Via Implementing Cloud-based Scalable
Transfer Learning On AWS DeepLens [0.8714677279673736]
We propose a machine learning approach to detect and classify plant leaf disease.
We use scalable transfer learning on AWS SageMaker and importing it on AWS DeepLens for real-time practical usability.
Our experiments on extensive image data set of healthy and unhealthy leaves of fruits and vegetables showed an accuracy of 98.78% with a real-time diagnosis of plant leaves diseases.
arXiv Detail & Related papers (2020-09-09T05:23:34Z) - Two-View Fine-grained Classification of Plant Species [66.75915278733197]
We propose a novel method based on a two-view leaf image representation and a hierarchical classification strategy for fine-grained recognition of plant species.
A deep metric based on Siamese convolutional neural networks is used to reduce the dependence on a large number of training samples and make the method scalable to new plant species.
arXiv Detail & Related papers (2020-05-18T21:57:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.