Fast Searching of Extreme Operating Conditions for Relay Protection Setting Calculation Based on Graph Neural Network and Reinforcement Learning
- URL: http://arxiv.org/abs/2501.09399v1
- Date: Thu, 16 Jan 2025 09:11:48 GMT
- Title: Fast Searching of Extreme Operating Conditions for Relay Protection Setting Calculation Based on Graph Neural Network and Reinforcement Learning
- Authors: Yan Li, Jingyu Wang, Jiankang Zhang, Huaiqiang Li, Longfei Ren, Yinhong Li, Dongyuan Shi, Xianzhong Duan,
- Abstract summary: This paper proposes an EOC fast search method, named Graph Dueling Double Deep Q Network (Graph D3QN), which combines graph neural network and deep reinforcement learning to address this challenge.<n>The proposed Graph D3QN method is validated through case studies of searching fault current for relay protection setting calculation on the IEEE 39-bus and 118-bus systems.
- Score: 17.53397766003465
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Searching for the Extreme Operating Conditions (EOCs) is one of the core problems of power system relay protection setting calculation. The current methods based on brute-force search, heuristic algorithms, and mathematical programming can hardly meet the requirements of today's power systems in terms of computation speed due to the drastic changes in operating conditions induced by renewables and power electronics. This paper proposes an EOC fast search method, named Graph Dueling Double Deep Q Network (Graph D3QN), which combines graph neural network and deep reinforcement learning to address this challenge. First, the EOC search problem is modeled as a Markov decision process, where the information of the underlying power system is extracted using graph neural networks, so that the EOC of the system can be found via deep reinforcement learning. Then, a two-stage Guided Learning and Free Exploration (GLFE) training framework is constructed to accelerate the convergence speed of reinforcement learning. Finally, the proposed Graph D3QN method is validated through case studies of searching maximum fault current for relay protection setting calculation on the IEEE 39-bus and 118-bus systems. The experimental results demonstrate that Graph D3QN can reduce the computation time by 10 to 1000 times while guaranteeing the accuracy of the selected EOCs.
Related papers
- Efficient Extreme Operating Condition Search for Online Relay Setting Calculation in Renewable Power Systems Based on Parallel Graph Neural Network [18.760156162138923]
This paper proposes an efficient deep learning-based EOCS method suitable for online relay setting calculation.<n>Experiment results show that the proposed PGNN method achieves higher accuracy than the existing methods in solving the EOCS problem.
arXiv Detail & Related papers (2025-06-24T03:50:58Z) - Data driven approach towards more efficient Newton-Raphson power flow calculation for distribution grids [1.6396659596758738]
Power flow (PF) calculations are fundamental to power system analysis to ensure stable and reliable grid operation.
The Newton-Raphson (NR) method is commonly used for PF analysis due to its rapid convergence when properly.
This work proposes strategies to improve NR, hence minimizing iterations and avoiding divergence.
arXiv Detail & Related papers (2025-04-15T22:37:55Z) - Graph neural networks for power grid operational risk assessment under evolving grid topology [4.6289929100615]
This article investigates the ability of graph neural networks (GNNs) to identify risky conditions in a power grid over the subsequent few hours.
The GNNs are trained using supervised learning, to predict the power grid's aggregated bus-level under different power supply and demand conditions.
The excellent accuracy of GNN-based reliability and risk assessment suggests that GNN models can substantially improve situational awareness.
arXiv Detail & Related papers (2024-05-12T17:40:27Z) - Spatio-Temporal Deep Learning-Assisted Reduced Security-Constrained Unit
Commitment [0.5076419064097734]
Security-constrained unit commitment (SCUC) is a computationally complex process utilized in power system day-ahead scheduling and market clearing.
In this paper, an advanced machine learning (ML) model is used to study the patterns in power system historical data, which inherently considers both spatial and temporal (ST) correlations in constraints.
The ST-correlated ML model is trained to understand spatial correlation by considering graph neural networks (GNN) whereas temporal sequences are studied using long short-term memory (LSTM) networks.
arXiv Detail & Related papers (2023-06-02T14:31:24Z) - Graph Reinforcement Learning-based CNN Inference Offloading in Dynamic
Edge Computing [93.67044879636093]
This paper addresses the computational offloading of CNN inference in dynamic multi-access edge computing (MEC) networks.
We propose a graph reinforcement learning-based early-exit mechanism (GRLE) which outperforms the state-of-the-art work.
The experimental results show that GRLE achieves the average accuracy up to 3.41x over graph reinforcement learning (GRL) and 1.45x over DROOE.
arXiv Detail & Related papers (2022-10-24T07:17:20Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
We propose an approach to solving partial differential equations (PDEs) using a set of neural networks.
We regress a set of neural networks onto a reduced order Proper Orthogonal Decomposition (POD) basis.
These networks are then used in combination with a branch network that ingests the parameters of the prescribed PDE to compute a reduced order approximation to the PDE.
arXiv Detail & Related papers (2022-08-02T18:27:13Z) - Robust and Fast Data-Driven Power System State Estimator Using Graph
Neural Networks [1.2891210250935146]
We present a method for training a model based on graph neural networks (GNNs) to learn estimates from PMU voltage and current measurements.
We propose an original GNN implementation over the power system's factor graph to simplify the incorporation of various types and numbers of measurements.
arXiv Detail & Related papers (2022-06-06T16:40:54Z) - Large-Scale Sequential Learning for Recommender and Engineering Systems [91.3755431537592]
In this thesis, we focus on the design of an automatic algorithms that provide personalized ranking by adapting to the current conditions.
For the former, we propose novel algorithm called SAROS that take into account both kinds of feedback for learning over the sequence of interactions.
The proposed idea of taking into account the neighbour lines shows statistically significant results in comparison with the initial approach for faults detection in power grid.
arXiv Detail & Related papers (2022-05-13T21:09:41Z) - Solving AC Power Flow with Graph Neural Networks under Realistic
Constraints [3.114162328765758]
We propose a graph neural network architecture to solve the AC power flow problem under realistic constraints.
In our approach, we demonstrate the development of a framework that uses graph neural networks to learn the physical constraints of the power flow.
arXiv Detail & Related papers (2022-04-14T14:49:34Z) - Graph Reinforcement Learning for Radio Resource Allocation [13.290246410488727]
We resort to graph reinforcement learning for exploiting two kinds of relational priors inherent in many problems in wireless communications.
To design graph reinforcement learning framework systematically, we first conceive a method to transform state matrix into state graph.
We then propose a general method for graph neural networks to satisfy desirable permutation properties.
arXiv Detail & Related papers (2022-03-08T08:02:54Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z) - RIS Enhanced Massive Non-orthogonal Multiple Access Networks: Deployment
and Passive Beamforming Design [116.88396201197533]
A novel framework is proposed for the deployment and passive beamforming design of a reconfigurable intelligent surface (RIS)
The problem of joint deployment, phase shift design, as well as power allocation is formulated for maximizing the energy efficiency.
A novel long short-term memory (LSTM) based echo state network (ESN) algorithm is proposed to predict users' tele-traffic demand by leveraging a real dataset.
A decaying double deep Q-network (D3QN) based position-acquisition and phase-control algorithm is proposed to solve the joint problem of deployment and design of the RIS.
arXiv Detail & Related papers (2020-01-28T14:37:38Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
We propose an adaptive anomaly detection approach for hierarchical edge computing (HEC) systems to solve this problem.
We design an adaptive scheme to select one of the models based on the contextual information extracted from input data, to perform anomaly detection.
We evaluate our proposed approach using a real IoT dataset, and demonstrate that it reduces detection delay by 84% while maintaining almost the same accuracy as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-01-10T05:29:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.