論文の概要: AutoCBT: An Autonomous Multi-agent Framework for Cognitive Behavioral Therapy in Psychological Counseling
- arxiv url: http://arxiv.org/abs/2501.09426v1
- Date: Thu, 16 Jan 2025 09:57:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-17 15:10:42.973045
- Title: AutoCBT: An Autonomous Multi-agent Framework for Cognitive Behavioral Therapy in Psychological Counseling
- Title(参考訳): AutoCBT:心理学的カウンセリングにおける認知行動療法のための自律的マルチエージェントフレームワーク
- Authors: Ancheng Xu, Di Yang, Renhao Li, Jingwei Zhu, Minghuan Tan, Min Yang, Wanxin Qiu, Mingchen Ma, Haihong Wu, Bingyu Li, Feng Sha, Chengming Li, Xiping Hu, Qiang Qu, Derek F. Wong, Ruifeng Xu,
- Abstract要約: 伝統的な個人の心理カウンセリングは主にニッチであり、心理学的な問題を持つ個人によって選択されることが多い。
オンラインの自動カウンセリングは、恥の感情によって助けを求めることをためらう人たちに潜在的な解決策を提供する。
- 参考スコア(独自算出の注目度): 57.054489290192535
- License:
- Abstract: Traditional in-person psychological counseling remains primarily niche, often chosen by individuals with psychological issues, while online automated counseling offers a potential solution for those hesitant to seek help due to feelings of shame. Cognitive Behavioral Therapy (CBT) is an essential and widely used approach in psychological counseling. The advent of large language models (LLMs) and agent technology enables automatic CBT diagnosis and treatment. However, current LLM-based CBT systems use agents with a fixed structure, limiting their self-optimization capabilities, or providing hollow, unhelpful suggestions due to redundant response patterns. In this work, we utilize Quora-like and YiXinLi single-round consultation models to build a general agent framework that generates high-quality responses for single-turn psychological consultation scenarios. We use a bilingual dataset to evaluate the quality of single-response consultations generated by each framework. Then, we incorporate dynamic routing and supervisory mechanisms inspired by real psychological counseling to construct a CBT-oriented autonomous multi-agent framework, demonstrating its general applicability. Experimental results indicate that AutoCBT can provide higher-quality automated psychological counseling services.
- Abstract(参考訳): 従来の個人の心理的カウンセリングは主にニッチであり、心理学的な問題を持つ個人によって選択されることが多いが、オンラインの自動カウンセリングは、恥の感情によって助けを求めることをためらう人々に潜在的な解決策を提供する。
認知行動療法(CBT)は、心理学的カウンセリングにおいて不可欠で広く用いられているアプローチである。
大規模言語モデル(LLM)とエージェント技術の出現により、自動CBT診断と治療が可能となった。
しかし、現在のLCMベースのCBTシステムでは、固定された構造を持つエージェントを使用し、自己最適化能力を制限するか、冗長な応答パターンによる空洞で非ヘルペスな提案を提供する。
本研究では,Quora-like および YiXinLi 単ラウンドコンサルテーションモデルを用いて,単ターン心理コンサルテーションシナリオに対する高品質な応答を生成する汎用エージェントフレームワークを構築する。
各フレームワークが生成する単一応答型コンサルティングの品質を評価するために,バイリンガルデータセットを用いた。
そして、実際の心理カウンセリングにインスパイアされた動的ルーティングと監督機構を取り入れて、CBT指向の自律型マルチエージェントフレームワークを構築し、その汎用性を実証する。
実験の結果,AutoCBTは高品質な自動心理カウンセリングサービスを提供できることがわかった。
関連論文リスト
- CBT-Bench: Evaluating Large Language Models on Assisting Cognitive Behavior Therapy [67.23830698947637]
認知行動療法(CBT)支援の体系的評価のための新しいベンチマークであるCBT-BENCHを提案する。
我々は, CBT-BENCHにおける3段階の課題を含む: I: 基本的CBT知識獲得, 複数選択質問のタスク; II: 認知的モデル理解, 認知的歪み分類, 主根的信念分類, きめ細かい中核信念分類のタスク; III: 治療的応答生成, CBTセラピーセッションにおける患者音声に対する応答生成のタスク。
実験結果から,LLMはCBT知識のリサイティングに優れるが,複雑な実世界のシナリオでは不十分であることが示唆された。
論文 参考訳(メタデータ) (2024-10-17T04:52:57Z) - Enhancing AI-Driven Psychological Consultation: Layered Prompts with Large Language Models [44.99833362998488]
我々は, GPT-4 のような大規模言語モデル (LLM) を用いて, 心理的コンサルテーションサービスの強化について検討する。
提案手法では,ユーザ入力に動的に適応する新しい階層型プロンプトシステムを提案する。
また,LLMの感情的インテリジェンスを高めるために,共感とシナリオに基づくプロンプトを開発する。
論文 参考訳(メタデータ) (2024-08-29T05:47:14Z) - Are Large Language Models Possible to Conduct Cognitive Behavioral Therapy? [13.0263170692984]
大規模言語モデル(LLM)が検証され、心理的補助療法の新たな可能性を提供する。
精神保健の専門家は、LSMを治療に使用することについて多くの懸念を抱いている。
自然言語処理性能に優れた4つのLLM変種を評価した。
論文 参考訳(メタデータ) (2024-07-25T03:01:47Z) - Cactus: Towards Psychological Counseling Conversations using Cognitive Behavioral Theory [24.937025825501998]
我々は,認知行動療法(Cognitive Behavioral Therapy, CBT)の目標指向的, 構造化的アプローチを用いて, 実生活インタラクションをエミュレートする多ターン対話データセットを作成する。
我々は、実際のカウンセリングセッションの評価、専門家の評価との整合性の確保に使用される確立された心理学的基準をベンチマークする。
Cactusで訓練されたモデルであるCamelはカウンセリングスキルにおいて他のモデルよりも優れており、カウンセリングエージェントとしての有効性と可能性を強調している。
論文 参考訳(メタデータ) (2024-07-03T13:41:31Z) - MentalAgora: A Gateway to Advanced Personalized Care in Mental Health through Multi-Agent Debating and Attribute Control [40.21489535255022]
MentalAgoraは、複数のエージェント間の相互作用によって強化された大きな言語モデルを利用した新しいフレームワークである。
このフレームワークは,戦略的議論,カウンセラー作成の調整,応答生成という3つの段階を通じて動作する。
実験やユーザスタディを含む評価は、MentalAgoraがプロの標準と整合し、ユーザの好みを効果的に満たしていることを示す。
論文 参考訳(メタデータ) (2024-07-03T01:19:38Z) - LLM Questionnaire Completion for Automatic Psychiatric Assessment [49.1574468325115]
大規模言語モデル(LLM)を用いて、非構造的心理面接を、様々な精神科領域と人格領域にまたがる構造化された質問票に変換する。
得られた回答は、うつ病の標準化された精神医学的指標(PHQ-8)とPTSD(PCL-C)の予測に使用される特徴として符号化される。
論文 参考訳(メタデータ) (2024-06-09T09:03:11Z) - PsychoGAT: A Novel Psychological Measurement Paradigm through Interactive Fiction Games with LLM Agents [68.50571379012621]
心理的な測定は、精神健康、自己理解、そして個人の発達に不可欠である。
心理学ゲームAgenT(サイコガト)は、信頼性、収束妥当性、差別的妥当性などの心理学的指標において統計的に有意な卓越性を達成している。
論文 参考訳(メタデータ) (2024-02-19T18:00:30Z) - K-ESConv: Knowledge Injection for Emotional Support Dialogue Systems via
Prompt Learning [83.19215082550163]
K-ESConvは、感情支援対話システムのための、新しい学習に基づく知識注入手法である。
本研究では,情緒的支援データセットESConvを用いて,外部の専門的情緒的Q&Aフォーラムから知識を抽出し,組み込んだモデルを評価した。
論文 参考訳(メタデータ) (2023-12-16T08:10:10Z) - Psy-LLM: Scaling up Global Mental Health Psychological Services with
AI-based Large Language Models [3.650517404744655]
Psy-LLMフレームワークは、大規模言語モデルを利用したAIベースのツールである。
我々のフレームワークは、トレーニング済みのLLMと心理学者や広範囲にクロールされた心理学記事の現実のプロフェッショナルQ&Aを組み合わせる。
医療専門家のためのフロントエンドツールとして機能し、即時対応とマインドフルネス活動を提供して患者のストレスを軽減する。
論文 参考訳(メタデータ) (2023-07-22T06:21:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。