Unpolarized prethermal discrete time crystal
- URL: http://arxiv.org/abs/2501.09461v1
- Date: Thu, 16 Jan 2025 10:47:17 GMT
- Title: Unpolarized prethermal discrete time crystal
- Authors: Takeru Yokota, Tatsuhiko N. Ikeda,
- Abstract summary: We introduce a new class of prethermal DTCs termed unpolarized prethermal discrete time crystals (UPDTCs)
We show that robust period-doubled dynamics can persist in the autocorrelation function of the staggered magnetization for paramagnetic initial states.
We demonstrate that UPDTCs are exponentially long-lived in the high-frequency driving regime, consistent with Floquet prethermalization.
- Score: 0.0
- License:
- Abstract: Prethermal discrete time crystals (DTCs) are a class of nonequilibrium phases of matter that exhibit robust subharmonic responses to periodic driving without requiring disorder. Prior realizations of prethermal DTCs have relied on the presence of either spontaneous or induced finite polarization. Here, we introduce a new class of prethermal DTCs termed unpolarized prethermal discrete time crystals (UPDTCs) that do not require finite polarization. By studying a spin model of periodically driven trapped ions, we show that robust period-doubled dynamics can persist in the autocorrelation function of the staggered magnetization for paramagnetic initial states, even when the staggered magnetization itself vanishes. The key insight is that quantum fluctuations alone are sufficient to reveal coherent DTC-like dynamics. We demonstrate that UPDTCs are exponentially long-lived in the high-frequency driving regime, consistent with Floquet prethermalization. Our results expand the known phenomenology of prethermal time crystals and underscore the role of quantum effects in stabilizing novel nonequilibrium phases. We propose an experimental protocol to observe UPDTCs in trapped-ion simulators.
Related papers
- Non-Hermitian Discrete Time Crystals [0.0]
We devise a mechanism for establishing a stable DTC with period-doubling oscillations in an open quantum system.
We find a specific class of non-reciprocal couplings in our non-Hermitian dynamics which prevents thermalization through eigenstate ordering.
arXiv Detail & Related papers (2024-10-30T05:39:18Z) - In-Gap Band Formation in a Periodically Driven Charge Density Wave
Insulator [68.8204255655161]
Periodically driven quantum many-body systems host unconventional behavior not realized at equilibrium.
We investigate such a setup for strongly interacting spinless fermions on a chain, which at zero temperature and strong interactions form a charge density wave insulator.
arXiv Detail & Related papers (2022-05-19T13:28:47Z) - Clean two-dimensional Floquet time-crystal [68.8204255655161]
We consider the two-dimensional quantum Ising model, in absence of disorder, subject to periodic imperfect global spin flips.
We show by a combination of exact diagonalization and tensor-network methods that the system can sustain a spontaneously broken discrete time-translation symmetry.
We observe a non-perturbative change in the decay rate of the order parameter, which is related to the long-lived stability of the magnetic domains in 2D.
arXiv Detail & Related papers (2022-05-10T13:04:43Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Criticality and Rigidity of Dissipative Discrete Time Crystals in Solids [0.0]
We consider a dissipative quantum Ising model periodically driven by a train of $pi$-pulses and investigate dissipative discrete time crystals (DTCs) in solids.
In this model, the interaction between the spins spontaneously breaks the discrete time translation symmetry, giving rise to a dissipative DTC.
We microscopically describe the generic dissipation due to thermal contact to an equilibrium heat bath using the Bloch-Redfield equation.
arXiv Detail & Related papers (2021-10-01T18:00:35Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Observation of a prethermal discrete time crystal [3.3533165463563352]
Extensions to non-equilibrium systems have led to surprising insights into the nature of many-body thermalization.
In this work, we utilize a trapped-ion quantum simulator to observe signatures of a non-equilibrium driven phase without disorder.
arXiv Detail & Related papers (2021-02-02T19:00:00Z) - Analog cosmological reheating in an ultracold Bose gas [58.720142291102135]
We quantum-simulate the reheating-like dynamics of a generic cosmological single-field model in an ultracold Bose gas.
Expanding spacetime as well as the background oscillating inflaton field are mimicked in the non-relativistic limit.
The proposed experiment has the potential of exploring the evolution up to late times even beyond the weak coupling regime.
arXiv Detail & Related papers (2020-08-05T18:00:26Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Phase diagram and optimal control for n-tupling discrete time crystal [0.0]
In periodically driven systems, discrete time crystals (DTC) can be realized which have a periodicity that is n times the driving period.
In this work, we demonstrate that such DTC is robust against perturbations to the initial distribution of atoms.
arXiv Detail & Related papers (2020-04-30T17:31:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.