Observation of a prethermal discrete time crystal
- URL: http://arxiv.org/abs/2102.01695v1
- Date: Tue, 2 Feb 2021 19:00:00 GMT
- Title: Observation of a prethermal discrete time crystal
- Authors: Antonis Kyprianidis, Francisco Machado, William Morong, Patrick
Becker, Kate S. Collins, Dominic V. Else, Lei Feng, Paul W. Hess, Chetan
Nayak, Guido Pagano, Norman Y. Yao, Christopher Monroe
- Abstract summary: Extensions to non-equilibrium systems have led to surprising insights into the nature of many-body thermalization.
In this work, we utilize a trapped-ion quantum simulator to observe signatures of a non-equilibrium driven phase without disorder.
- Score: 3.3533165463563352
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The conventional framework for defining and understanding phases of matter
requires thermodynamic equilibrium. Extensions to non-equilibrium systems have
led to surprising insights into the nature of many-body thermalization and the
discovery of novel phases of matter, often catalyzed by driving the system
periodically. The inherent heating from such Floquet drives can be tempered by
including strong disorder in the system, but this can also mask the generality
of non-equilibrium phases. In this work, we utilize a trapped-ion quantum
simulator to observe signatures of a non-equilibrium driven phase without
disorder: the prethermal discrete time crystal (PDTC). Here, many-body heating
is suppressed not by disorder-induced many-body localization, but instead via
high-frequency driving, leading to an expansive time window where
non-equilibrium phases can emerge. We observe a number of key features that
distinguish the PDTC from its many-body-localized disordered counterpart, such
as the drive-frequency control of its lifetime and the dependence of
time-crystalline order on the energy density of the initial state. Floquet
prethermalization is thus presented as a general strategy for creating,
stabilizing and studying intrinsically out-of-equilibrium phases of matter.
Related papers
- Information scrambling and entanglement dynamics in Floquet Time Crystals [49.1574468325115]
We study the dynamics of out-of-time-ordered correlators (OTOCs) and entanglement of entropy as measures of information propagation in disordered systems.
arXiv Detail & Related papers (2024-11-20T17:18:42Z) - Non-Hermitian Discrete Time Crystals [0.0]
We devise a mechanism for establishing a stable DTC with period-doubling oscillations in an open quantum system.
We find a specific class of non-reciprocal couplings in our non-Hermitian dynamics which prevents thermalization through eigenstate ordering.
arXiv Detail & Related papers (2024-10-30T05:39:18Z) - Emergent symmetries in prethermal phases of periodically driven quantum systems [0.0]
Periodically driven closed quantum systems are expected to eventually heat up to infinite temperature reaching a steady state.
However, their properties in long prethermal regimes are qualitatively different from that in their infinite temperature steady states.
These, often experimentally relevant, prethermal regimes host a wide range of phenomena.
They may exhibit dynamical localization and freezing, host Floquet scars, display signatures of Hilbert space fragmentation, and exhibit time crystalline phases.
arXiv Detail & Related papers (2024-07-30T12:08:31Z) - Quantum thermodynamics of boundary time-crystals [0.0]
Time-translation symmetry breaking is a mechanism for the emergence of non-stationary many-body phases, so-called time-crystals, in Markovian open quantum systems.
Here, we consider the paradigmatic boundary time-crystal system, in a finite-temperature environment, and demonstrate the persistence of the time-crystalline phase at any temperature.
Our work sheds light on the thermodynamic cost of sustaining nonequilibrium time-crystalline phases and provides a framework for characterizing time-crystals as possible resources for, e.g., quantum sensing.
arXiv Detail & Related papers (2023-06-12T18:00:04Z) - Observation of a Prethermal $U(1)$ Discrete Time Crystal [0.0]
A time crystal is a state of periodically driven matter which breaks discrete time translation symmetry.
Recent theoretical work has developed the notion of prethermalization.
We show the existence of a long-lived prethermal regime whose lifetime is significantly enhanced by.
strengthening an emergent $U(1)$ conservation law.
arXiv Detail & Related papers (2023-03-17T20:30:33Z) - Clean two-dimensional Floquet time-crystal [68.8204255655161]
We consider the two-dimensional quantum Ising model, in absence of disorder, subject to periodic imperfect global spin flips.
We show by a combination of exact diagonalization and tensor-network methods that the system can sustain a spontaneously broken discrete time-translation symmetry.
We observe a non-perturbative change in the decay rate of the order parameter, which is related to the long-lived stability of the magnetic domains in 2D.
arXiv Detail & Related papers (2022-05-10T13:04:43Z) - Genuine Multipartite Correlations in a Boundary Time Crystal [56.967919268256786]
We study genuine multipartite correlations (GMC's) in a boundary time crystal (BTC)
We analyze both (i) the structure (orders) of GMC's among the subsystems, as well as (ii) their build-up dynamics for an initially uncorrelated state.
arXiv Detail & Related papers (2021-12-21T20:25:02Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Analog cosmological reheating in an ultracold Bose gas [58.720142291102135]
We quantum-simulate the reheating-like dynamics of a generic cosmological single-field model in an ultracold Bose gas.
Expanding spacetime as well as the background oscillating inflaton field are mimicked in the non-relativistic limit.
The proposed experiment has the potential of exploring the evolution up to late times even beyond the weak coupling regime.
arXiv Detail & Related papers (2020-08-05T18:00:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.