Parallel Detection for Efficient Video Analytics at the Edge
- URL: http://arxiv.org/abs/2107.12563v1
- Date: Tue, 27 Jul 2021 02:50:46 GMT
- Title: Parallel Detection for Efficient Video Analytics at the Edge
- Authors: Yanzhao Wu, Ling Liu, Ramana Kompella
- Abstract summary: Deep Neural Network (DNN) trained object detectors are widely deployed in mission-critical systems for real time video analytics at the edge.
A common performance requirement in mission-critical edge services is the near real-time latency of online object detection on edge devices.
This paper addresses these problems by exploiting multi-model multi-device detection parallelism for fast object detection in edge systems.
- Score: 5.547133811014004
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep Neural Network (DNN) trained object detectors are widely deployed in
many mission-critical systems for real time video analytics at the edge, such
as autonomous driving and video surveillance. A common performance requirement
in these mission-critical edge services is the near real-time latency of online
object detection on edge devices. However, even with well-trained DNN object
detectors, the online detection quality at edge may deteriorate for a number of
reasons, such as limited capacity to run DNN object detection models on
heterogeneous edge devices, and detection quality degradation due to random
frame dropping when the detection processing rate is significantly slower than
the incoming video frame rate. This paper addresses these problems by
exploiting multi-model multi-device detection parallelism for fast object
detection in edge systems with heterogeneous edge devices. First, we analyze
the performance bottleneck of running a well-trained DNN model at edge for real
time online object detection. We use the offline detection as a reference
model, and examine the root cause by analyzing the mismatch among the incoming
video streaming rate, video processing rate for object detection, and output
rate for real time detection visualization of video streaming. Second, we study
performance optimizations by exploiting multi-model detection parallelism. We
show that the model-parallel detection approach can effectively speed up the
FPS detection processing rate, minimizing the FPS disparity with the incoming
video frame rate on heterogeneous edge devices. We evaluate the proposed
approach using SSD300 and YOLOv3 on benchmark videos of different video stream
rates. The results show that exploiting multi-model detection parallelism can
speed up the online object detection processing rate and deliver near real-time
object detection performance for efficient video analytics at edge.
Related papers
- Weakly Supervised Video Anomaly Detection and Localization with Spatio-Temporal Prompts [57.01985221057047]
This paper introduces a novel method that learnstemporal prompt embeddings for weakly supervised video anomaly detection and localization (WSVADL) based on pre-trained vision-language models (VLMs)
Our method achieves state-of-theart performance on three public benchmarks for the WSVADL task.
arXiv Detail & Related papers (2024-08-12T03:31:29Z) - Edge Computing Enabled Real-Time Video Analysis via Adaptive
Spatial-Temporal Semantic Filtering [18.55091203660391]
This paper proposes a novel edge computing enabled real-time video analysis system for intelligent visual devices.
The proposed system consists of a tracking-assisted object detection module (TAODM) and a region of interesting module (ROIM)
TAODM adaptively determines the offloading decision to process each video frame locally with a tracking algorithm or to offload it to the edge server inferred by an object detection model.
arXiv Detail & Related papers (2024-02-29T07:42:03Z) - FrameHopper: Selective Processing of Video Frames in Detection-driven
Real-Time Video Analytics [2.5119455331413376]
Detection-driven real-time video analytics require continuous detection of objects contained in the video frames.
Running these detectors on each and every frame in resource-constrained edge devices is computationally intensive.
We propose an off-line Reinforcement Learning (RL)-based algorithm to determine these skip-lengths.
arXiv Detail & Related papers (2022-03-22T07:05:57Z) - Implicit Motion Handling for Video Camouflaged Object Detection [60.98467179649398]
We propose a new video camouflaged object detection (VCOD) framework.
It can exploit both short-term and long-term temporal consistency to detect camouflaged objects from video frames.
arXiv Detail & Related papers (2022-03-14T17:55:41Z) - Video Salient Object Detection via Contrastive Features and Attention
Modules [106.33219760012048]
We propose a network with attention modules to learn contrastive features for video salient object detection.
A co-attention formulation is utilized to combine the low-level and high-level features.
We show that the proposed method requires less computation, and performs favorably against the state-of-the-art approaches.
arXiv Detail & Related papers (2021-11-03T17:40:32Z) - Motion Vector Extrapolation for Video Object Detection [0.0]
MOVEX enables low latency video object detection on common CPU based systems.
We show that our approach significantly reduces the baseline latency of any given object detector.
Further latency reduction, up to 25x lower than the original latency, can be achieved with minimal accuracy loss.
arXiv Detail & Related papers (2021-04-18T17:26:37Z) - Robust Unsupervised Video Anomaly Detection by Multi-Path Frame
Prediction [61.17654438176999]
We propose a novel and robust unsupervised video anomaly detection method by frame prediction with proper design.
Our proposed method obtains the frame-level AUROC score of 88.3% on the CUHK Avenue dataset.
arXiv Detail & Related papers (2020-11-05T11:34:12Z) - Video Anomaly Detection Using Pre-Trained Deep Convolutional Neural Nets
and Context Mining [2.0646127669654835]
We show how to use pre-trained convolutional neural net models to perform feature extraction and context mining.
We derive contextual properties from the high-level features to further improve the performance of our video anomaly detection method.
arXiv Detail & Related papers (2020-10-06T00:26:14Z) - Joint Detection and Tracking in Videos with Identification Features [36.55599286568541]
We propose the first joint optimization of detection, tracking and re-identification features for videos.
Our method reaches the state-of-the-art on MOT, it ranks 1st in the UA-DETRAC'18 tracking challenge among online trackers, and 3rd overall.
arXiv Detail & Related papers (2020-05-21T21:06:40Z) - Depthwise Non-local Module for Fast Salient Object Detection Using a
Single Thread [136.2224792151324]
We propose a new deep learning algorithm for fast salient object detection.
The proposed algorithm achieves competitive accuracy and high inference efficiency simultaneously with a single CPU thread.
arXiv Detail & Related papers (2020-01-22T15:23:48Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
We propose an adaptive anomaly detection approach for hierarchical edge computing (HEC) systems to solve this problem.
We design an adaptive scheme to select one of the models based on the contextual information extracted from input data, to perform anomaly detection.
We evaluate our proposed approach using a real IoT dataset, and demonstrate that it reduces detection delay by 84% while maintaining almost the same accuracy as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-01-10T05:29:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.