論文の概要: AdaFV: Accelerating VLMs with Self-Adaptive Cross-Modality Attention Mixture
- arxiv url: http://arxiv.org/abs/2501.09532v1
- Date: Thu, 16 Jan 2025 13:34:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-17 15:10:07.362486
- Title: AdaFV: Accelerating VLMs with Self-Adaptive Cross-Modality Attention Mixture
- Title(参考訳): AdaFV: 自己適応型クロスモーダルアテンションミキサーを用いたVLMの高速化
- Authors: Jiayi Han, Liang Du, Yiwen Wu, Xiangguo Zhou, Hongwei Du, Weibo Zheng,
- Abstract要約: 偏りのあるVLMの自己アテンションに応じて視覚トークンを減らすいくつかのアプローチは、不正確な応答をもたらす。
本稿では,視覚的満足度とテキスト・ツー・イメージの類似性の有効性を動的に活用する,自己適応型クロスモーダリティ・アテンション・ミックス機構を提案する。
提案手法は,特に縮小速度が十分に大きい場合,最先端のトレーニング不要なVLM加速性能を実現する。
- 参考スコア(独自算出の注目度): 7.9213473377478865
- License:
- Abstract: The success of VLMs often relies on the dynamic high-resolution schema that adaptively augments the input images to multiple crops, so that the details of the images can be retained. However, such approaches result in a large number of redundant visual tokens, thus significantly reducing the efficiency of the VLMs. To improve the VLMs' efficiency without introducing extra training costs, many research works are proposed to reduce the visual tokens by filtering the uninformative visual tokens or aggregating their information. Some approaches propose to reduce the visual tokens according to the self-attention of VLMs, which are biased, to result in inaccurate responses. The token reduction approaches solely rely on visual cues are text-agnostic, and fail to focus on the areas that are most relevant to the question, especially when the queried objects are non-salient to the image. In this work, we first conduct experiments to show that the original text embeddings are aligned with the visual tokens, without bias on the tailed visual tokens. We then propose a self-adaptive cross-modality attention mixture mechanism that dynamically leverages the effectiveness of visual saliency and text-to-image similarity in the pre-LLM layers to select the visual tokens that are informative. Extensive experiments demonstrate that the proposed approach achieves state-of-the-art training-free VLM acceleration performance, especially when the reduction rate is sufficiently large.
- Abstract(参考訳): VLMの成功はしばしば、入力イメージを複数の作物に適応的に拡張する動的高解像度スキーマに依存し、画像の詳細を保持することができる。
しかし、このようなアプローチは多数の冗長な視覚トークンをもたらすため、VLMの効率は著しく低下する。
余分なトレーニングコストを伴わずにVLMの効率を向上させるために、非形式的視覚トークンをフィルタリングしたり、情報を集約したりすることで、視覚トークンを減らすための多くの研究が提案されている。
いくつかのアプローチでは、VLMの自己アテンションに応じて視覚トークンを減らすことを提案しており、これは偏りがあり、不正確な応答をもたらす。
トークン還元アプローチは、視覚的手がかりにのみ依存しており、特にクエリされたオブジェクトが画像に従属しない場合に、その問題に最も関係のある領域に焦点を合わせることができない。
本研究では,まず,オリジナルテキストの埋め込みが視覚トークンと一致していることを示す実験を行う。
次に,LLM前層における視覚的満足度とテキスト・ツー・イメージの類似性の有効性を動的に活用して,視覚的トークンの選択を行う,自己適応型クロスモーダル・アテンション・ミックス機構を提案する。
大規模な実験により, 提案手法は, 特に縮小速度が十分に大きい場合, 最先端の訓練不要なVLM加速性能を実現することが実証された。
関連論文リスト
- Symmetrical Visual Contrastive Optimization: Aligning Vision-Language Models with Minimal Contrastive Images [7.823336661261962]
VLM(Large Vision-Language Models)は、画像の内容を無視し、言語モデルに過剰に依存する傾向にある。
本稿では,S-VCO(Symmetrical Visual Contrastive Optimization)を提案する。
論文 参考訳(メタデータ) (2025-02-19T18:05:42Z) - VASparse: Towards Efficient Visual Hallucination Mitigation for Large Vision-Language Model via Visual-Aware Sparsification [44.97217246897902]
LVLM(Large Vision-Language Models)は、視覚幻覚(VH)としても知られる、現実に忠実でない出力を生成する。
Visual-Aware Sparsification (VASparse) を用いた効率的なプラグアンドプレイデコーディングアルゴリズムを提案する。
VHを緩和し、競争力のある復号速度を維持しながら、VASparseは最先端の性能を達成する。
論文 参考訳(メタデータ) (2025-01-11T14:09:34Z) - [CLS] Token Tells Everything Needed for Training-free Efficient MLLMs [66.5266435598799]
MLLM(Multi- Language Large Language Models)は、最近、広範囲の視覚タスクにおいて強力なパフォーマンスを示した。
しかし、その効率的なデプロイメントは、高い計算コストとメモリ要求のため、依然として大きな課題である。
本稿では,VTC圧縮という,列車不要の視覚圧縮のための簡易かつ効果的な手法を提案する。
論文 参考訳(メタデータ) (2024-12-08T05:29:39Z) - A Stitch in Time Saves Nine: Small VLM is a Precise Guidance for Accelerating Large VLMs [65.00970402080351]
大規模視覚言語モデル(VLM)を加速するための有望なアプローチは、特定のレイヤからの注意マップのような部分的な情報を使用してトークンの重要性を評価し、重要度を低く抑えることである。
i) 重要な視覚的トークンを正確に識別するには,部分的注意情報は不十分であり,特に低トークン保持率において,最適なパフォーマンスをもたらす。 (ii) 全層に集約された注目マップのようなグローバルな注意情報は,より効果的に重要なトークンを保存し,攻撃的プルーニングの下で同等のパフォーマンスを維持する。 (iii) 小さなVLMから集約されたグローバルな注意マップは,大きなVLMとよく似ている。
論文 参考訳(メタデータ) (2024-12-04T13:56:44Z) - Accelerating Multimodal Large Language Models via Dynamic Visual-Token Exit and the Empirical Findings [69.35226485836641]
既存のMultimoal Large Language Models (MLLM) における視覚トークンの過剰使用は、しばしば明らかな冗長性を示し、非常に高価な計算をもたらす。
DyVTE(Dynamic visual-token exit)と呼ばれるMLLMの効率を改善するための簡易かつ効果的な手法を提案する。
DyVTEは軽量なハイパーネットワークを使用して、テキストトークンの状態を認識し、特定のレイヤの後にすべてのビジュアルトークンを削除する。
論文 参考訳(メタデータ) (2024-11-29T11:24:23Z) - Efficient Multi-modal Large Language Models via Visual Token Grouping [55.482198808206284]
高解像度の画像やビデオは、彼らの広く普及するための障壁となる。
MLLMにおける視覚トークンの圧縮は、推論コストを削減するための有望なアプローチとして現れている。
本稿では,事前学習した視覚エンコーダの能力を利用して類似画像セグメントをグループ化する,新たなグループ化機構であるVisToGを紹介する。
論文 参考訳(メタデータ) (2024-11-26T09:36:02Z) - FoPru: Focal Pruning for Efficient Large Vision-Language Models [11.36025001578531]
本稿では、視覚エンコーダから導出される注目に基づくトークンの重要度に基づいて、視覚トークンを抽出する訓練不要なFocal Pruning(FoPru)を提案する。
提案手法は,高い精度を維持しつつ多数の冗長トークンを抽出し,推論効率を大幅に向上させる。
論文 参考訳(メタデータ) (2024-11-21T14:22:38Z) - Instruction Tuning-free Visual Token Complement for Multimodal LLMs [51.138806401996696]
マルチモーダルな大言語モデル(MLLM)は、視覚と言語の間のエレガントな橋渡しを約束している。
本稿では,MLLM が欠落した視覚機能を取り戻すのに役立つ Visual Token Complement フレームワーク (VTC) を提案する。
我々のVTCは、テキスト不関連特徴を特定するためのガイドとしてテキスト・ツー・イメージ生成を統合し、視覚的セレクタを開発し、補完的な視覚的トークンを生成する。
論文 参考訳(メタデータ) (2024-08-09T12:13:01Z) - Efficient Large Multi-modal Models via Visual Context Compression [23.966237939194514]
本稿では,視覚トークンに関する冗長性の解析と,大規模言語モデルにおける効率的な訓練について述べる。
最初の実験では、単に平均プーリングによってテスト段階で最大70%の視覚トークンを除去することは、視覚的質問応答精度の最小3%の低下にしか至らないことが示された。
GQAベンチマークにビジュアルコンテキストを導入し、視覚トークンの数を減らし、性能を犠牲にすることなくトレーニングと推論効率を向上させる。
論文 参考訳(メタデータ) (2024-06-28T17:57:14Z) - Debiasing Multimodal Large Language Models [61.6896704217147]
LVLM(Large Vision-Language Models)は、コンピュータビジョンや自然言語処理において欠かせないツールとなっている。
本研究は,入力画像に先行するLarge Language Models (LLM) の影響を主に受け,生成したコンテンツに有意なバイアスが生じることを示す。
これらのバイアスを是正し、視覚情報に対するモデルの焦点をリダイレクトするために、我々は2つの単純で訓練のない戦略を導入する。
論文 参考訳(メタデータ) (2024-03-08T12:35:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。