論文の概要: A Simplification Method for Inequality Constraints in Integer Binary Encoding HOBO Formulations
- arxiv url: http://arxiv.org/abs/2501.09670v3
- Date: Mon, 20 Jan 2025 02:17:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:20:45.495956
- Title: A Simplification Method for Inequality Constraints in Integer Binary Encoding HOBO Formulations
- Title(参考訳): 整数二元符号HOBO定式化における不等式制約の簡易化法
- Authors: Yuichiro Minato,
- Abstract要約: 提案手法は,擬似非拘束バイナリ最適化(QUBO)の定式化に伴う課題に対処する。
制約を効率的に統合することにより、量子および古典的解法の計算効率と精度を高めることができる。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This study proposes a novel method for simplifying inequality constraints in Higher-Order Binary Optimization (HOBO) formulations. The proposed method addresses challenges associated with Quadratic Unconstrained Binary Optimization (QUBO) formulations, specifically the increased computational complexity and reduced solution accuracy caused by the introduction of slack variables and the resulting growth in auxiliary qubits. By efficiently integrating constraints, the method enhances the computational efficiency and accuracy of both quantum and classical solvers. The effectiveness of the proposed approach is demonstrated through numerical experiments applied to combinatorial optimization problems. The results indicate that this method expands the applicability of quantum algorithms to high-dimensional problems and improves the practicality of classical optimization solvers for optimization problems involving inequality constraints.
- Abstract(参考訳): 本研究では,高次二項最適化(HOBO)における不等式制約を単純化する手法を提案する。
提案手法は, 擬似非拘束バイナリ最適化(QUBO)の定式化に伴う問題, 特にスラック変数の導入による計算複雑性の増大と解の精度の低下に対処する。
制約を効率的に統合することにより、量子および古典的解法の計算効率と精度を高めることができる。
組合せ最適化問題に適用した数値実験により,提案手法の有効性を実証した。
その結果, 量子アルゴリズムの適用性を高次元問題に拡張し, 不等式制約を含む最適化問題に対する古典的最適化解法の実現性を向上させることが示唆された。
関連論文リスト
- Provably Faster Algorithms for Bilevel Optimization via Without-Replacement Sampling [96.47086913559289]
勾配に基づくアルゴリズムはバイレベル最適化に広く用いられている。
本研究では,より高速な収束率を実現する非置換サンプリングに基づくアルゴリズムを提案する。
合成および実世界の両方のアプリケーションに対してアルゴリズムを検証する。
論文 参考訳(メタデータ) (2024-11-07T17:05:31Z) - Two-Step QAOA: Enhancing Quantum Optimization by Decomposing One-Hot Constraints in QUBO Formulations [0.0]
本稿では,QAOAの有効性を向上させるための簡単なアプローチであるTwo-Step QAOAを提案する。
問題を2段階に分けて,ソフト制約をハード制約に変換する。
論文 参考訳(メタデータ) (2024-08-09T23:38:28Z) - Optimized QUBO formulation methods for quantum computing [0.4999814847776097]
実世界の金融シナリオにインスパイアされたNPハード最適化問題に対して,我々の手法を適用する方法について述べる。
2つのD波量子異方体にこの問題の事例を提出し、これらのシナリオで使用される標準手法と新しい手法の性能を比較した。
論文 参考訳(メタデータ) (2024-06-11T19:59:05Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
凸離散最適化問題に対する現在の標準的なアプローチは、カットプレーンアルゴリズムを使うことである。
多くの汎用カット生成アルゴリズムが存在するにもかかわらず、大規模な離散最適化問題は、難易度に悩まされ続けている。
そこで本研究では,強化学習による切削平面アルゴリズムの高速化手法を提案する。
論文 参考訳(メタデータ) (2023-07-17T20:11:56Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
本稿では,ハイパースペクトル画像のデコンボリューション問題に対処する新しい手法を提案する。
新しい最適化問題を定式化し、学習可能な正規化器をニューラルネットワークの形で活用する。
導出した反復解法は、Deep Equilibriumフレームワーク内の不動点計算問題として表現される。
論文 参考訳(メタデータ) (2023-06-10T08:25:16Z) - Linearization Algorithms for Fully Composite Optimization [61.20539085730636]
本稿では,完全合成最適化問題を凸コンパクト集合で解くための一階アルゴリズムについて検討する。
微分可能および非微分可能を別々に扱い、滑らかな部分のみを線形化することで目的の構造を利用する。
論文 参考訳(メタデータ) (2023-02-24T18:41:48Z) - Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods [75.34939761152587]
2つの分布間の最適な輸送距離の効率的な計算は、様々な応用を促進するアルゴリズムとして機能する。
本稿では,$varepsilon$加法精度で最適な輸送を計算できるスケーラブルな一階最適化法を提案する。
論文 参考訳(メタデータ) (2023-01-30T15:46:39Z) - A Comparative Study On Solving Optimization Problems With Exponentially
Fewer Qubits [0.0]
変分量子固有解法(VQE)に基づくアルゴリズムの評価と改良を行った。
我々は,問題を変分アンサッツにエンコードすることで生じる数値不安定性を強調する。
より少ないイテレーションでアンザッツの基底状態を求めるための古典的な最適化手法を提案する。
論文 参考訳(メタデータ) (2022-10-21T08:54:12Z) - Amortized Implicit Differentiation for Stochastic Bilevel Optimization [53.12363770169761]
決定論的条件と決定論的条件の両方において、二段階最適化問題を解決するアルゴリズムのクラスについて検討する。
厳密な勾配の推定を補正するために、ウォームスタート戦略を利用する。
このフレームワークを用いることで、これらのアルゴリズムは勾配の偏りのない推定値にアクセス可能な手法の計算複雑性と一致することを示す。
論文 参考訳(メタデータ) (2021-11-29T15:10:09Z) - Quantum variational optimization: The role of entanglement and problem
hardness [0.0]
本稿では, 絡み合いの役割, 変動量子回路の構造, 最適化問題の構造について検討する。
数値計算の結果,絡み合うゲートの分布を問題のトポロジに適応させる利点が示唆された。
リスク型コスト関数に条件値を適用することで最適化が向上し、最適解と重複する確率が増大することを示す。
論文 参考訳(メタデータ) (2021-03-26T14:06:54Z) - Quantum approximate algorithm for NP optimization problems with
constraints [12.294570891467604]
本稿では,異なる制約型を等式,線形不等式,任意の形式に定式化する。
そこで本研究では,NP最適化問題の解法としてQAOAフレームワークに適合する制約符号化方式を提案する。
提案手法の有効性と有効性を示す。
論文 参考訳(メタデータ) (2020-02-01T04:45:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。