A Simplification Method for Inequality Constraints in Integer Binary Encoding HOBO Formulations
- URL: http://arxiv.org/abs/2501.09670v3
- Date: Mon, 20 Jan 2025 02:17:17 GMT
- Title: A Simplification Method for Inequality Constraints in Integer Binary Encoding HOBO Formulations
- Authors: Yuichiro Minato,
- Abstract summary: The proposed method addresses challenges associated with Quadratic Unconstrained Binary Optimization (QUBO) formulations.
By efficiently integrating constraints, the method enhances the computational efficiency and accuracy of both quantum and classical solvers.
- Score: 0.0
- License:
- Abstract: This study proposes a novel method for simplifying inequality constraints in Higher-Order Binary Optimization (HOBO) formulations. The proposed method addresses challenges associated with Quadratic Unconstrained Binary Optimization (QUBO) formulations, specifically the increased computational complexity and reduced solution accuracy caused by the introduction of slack variables and the resulting growth in auxiliary qubits. By efficiently integrating constraints, the method enhances the computational efficiency and accuracy of both quantum and classical solvers. The effectiveness of the proposed approach is demonstrated through numerical experiments applied to combinatorial optimization problems. The results indicate that this method expands the applicability of quantum algorithms to high-dimensional problems and improves the practicality of classical optimization solvers for optimization problems involving inequality constraints.
Related papers
- Provably Faster Algorithms for Bilevel Optimization via Without-Replacement Sampling [96.47086913559289]
gradient-based algorithms are widely used in bilevel optimization.
We introduce a without-replacement sampling based algorithm which achieves a faster convergence rate.
We validate our algorithms over both synthetic and real-world applications.
arXiv Detail & Related papers (2024-11-07T17:05:31Z) - Two-Step QAOA: Enhancing Quantum Optimization by Decomposing One-Hot Constraints in QUBO Formulations [0.0]
We propose a simple approach, the Two-Step QAOA, which aims to improve the effectiveness of QAOA.
By identifying and separating the problem into two stages, we transform soft constraints into hard constraints.
arXiv Detail & Related papers (2024-08-09T23:38:28Z) - Optimized QUBO formulation methods for quantum computing [0.4999814847776097]
We show how to apply our techniques in case of an NP-hard optimization problem inspired by a real-world financial scenario.
We follow by submitting instances of this problem to two D-wave quantum annealers, comparing the performances of our novel approach with the standard methods used in these scenarios.
arXiv Detail & Related papers (2024-06-11T19:59:05Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
A current standard approach to solving convex discrete optimization problems is the use of cutting-plane algorithms.
Despite the existence of a number of general-purpose cut-generating algorithms, large-scale discrete optimization problems continue to suffer from intractability.
We propose a method for accelerating cutting-plane algorithms via reinforcement learning.
arXiv Detail & Related papers (2023-07-17T20:11:56Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
We propose a novel methodology for addressing the hyperspectral image deconvolution problem.
A new optimization problem is formulated, leveraging a learnable regularizer in the form of a neural network.
The derived iterative solver is then expressed as a fixed-point calculation problem within the Deep Equilibrium framework.
arXiv Detail & Related papers (2023-06-10T08:25:16Z) - Linearization Algorithms for Fully Composite Optimization [61.20539085730636]
This paper studies first-order algorithms for solving fully composite optimization problems convex compact sets.
We leverage the structure of the objective by handling differentiable and non-differentiable separately, linearizing only the smooth parts.
arXiv Detail & Related papers (2023-02-24T18:41:48Z) - Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods [75.34939761152587]
Efficient computation of the optimal transport distance between two distributions serves as an algorithm that empowers various applications.
This paper develops a scalable first-order optimization-based method that computes optimal transport to within $varepsilon$ additive accuracy.
arXiv Detail & Related papers (2023-01-30T15:46:39Z) - A Comparative Study On Solving Optimization Problems With Exponentially
Fewer Qubits [0.0]
We evaluate and improve an algorithm based on Variational Quantum Eigensolver (VQE)
We highlight the numerical instabilities generated by encoding the problem into the variational ansatz.
We propose a classical optimization procedure to find the ground-state of the ansatz in less iterations with a better objective.
arXiv Detail & Related papers (2022-10-21T08:54:12Z) - Amortized Implicit Differentiation for Stochastic Bilevel Optimization [53.12363770169761]
We study a class of algorithms for solving bilevel optimization problems in both deterministic and deterministic settings.
We exploit a warm-start strategy to amortize the estimation of the exact gradient.
By using this framework, our analysis shows these algorithms to match the computational complexity of methods that have access to an unbiased estimate of the gradient.
arXiv Detail & Related papers (2021-11-29T15:10:09Z) - Quantum variational optimization: The role of entanglement and problem
hardness [0.0]
We study the role of entanglement, the structure of the variational quantum circuit, and the structure of the optimization problem.
Our numerical results indicate an advantage in adapting the distribution of entangling gates to the problem's topology.
We find evidence that applying conditional value at risk type cost functions improves the optimization, increasing the probability of overlap with the optimal solutions.
arXiv Detail & Related papers (2021-03-26T14:06:54Z) - Quantum approximate algorithm for NP optimization problems with
constraints [12.294570891467604]
In this paper, we formalize different constraint types to equalities, linear inequalities, and arbitrary form.
Based on this, we propose constraint-encoding schemes well-fitting into the QAOA framework for solving NP optimization problems.
The implemented algorithms demonstrate the effectiveness and efficiency of the proposed scheme.
arXiv Detail & Related papers (2020-02-01T04:45:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.