Two-Step QAOA: Enhancing Quantum Optimization by Decomposing One-Hot Constraints in QUBO Formulations
- URL: http://arxiv.org/abs/2408.05383v1
- Date: Fri, 9 Aug 2024 23:38:28 GMT
- Title: Two-Step QAOA: Enhancing Quantum Optimization by Decomposing One-Hot Constraints in QUBO Formulations
- Authors: Yuichiro Minato,
- Abstract summary: We propose a simple approach, the Two-Step QAOA, which aims to improve the effectiveness of QAOA.
By identifying and separating the problem into two stages, we transform soft constraints into hard constraints.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Quantum Approximate Optimization Algorithm (QAOA) has shown promise in solving combinatorial optimization problems by leveraging quantum computational power. We propose a simple approach, the Two-Step QAOA, which aims to improve the effectiveness of QAOA by decomposing problems with one-hot encoding QUBO (Quadratic Unconstrained Binary Optimization) formulations. By identifying and separating the problem into two stages, we transform soft constraints into hard constraints, simplifying the generation of initial conditions and enabling more efficient optimization. The method is particularly beneficial for tackling complex societal problems that often involve intricate constraint structures.
Related papers
- Optimized QUBO formulation methods for quantum computing [0.4999814847776097]
We show how to apply our techniques in case of an NP-hard optimization problem inspired by a real-world financial scenario.
We follow by submitting instances of this problem to two D-wave quantum annealers, comparing the performances of our novel approach with the standard methods used in these scenarios.
arXiv Detail & Related papers (2024-06-11T19:59:05Z) - Lagrangian Duality in Quantum Optimization: Overcoming QUBO Limitations for Constrained Problems [0.0]
We propose an approach to solving constrained optimization problems based on embedding the concept of Lagrangian duality into the framework of adiabatic quantum computation.
Within the setting of circuit-model fault-tolerant quantum computation, we demonstrate that this approach achieves a quadratic improvement in circuit depth and maintains a constraint-independent circuit width.
arXiv Detail & Related papers (2023-10-06T19:09:55Z) - Hybrid Quantum Algorithms integrating QAOA, Penalty Dephasing and Zeno
Effect for Solving Binary Optimization Problems with Multiple Constraints [5.259170150405252]
This paper presents a hybrid framework that combines the use of standard Ising Hamiltonians to solve a subset of the constraints.
The resolution of these non-Ising constraints is achieved through either penalty dephasing or the quantum Zeno effect.
arXiv Detail & Related papers (2023-05-14T03:49:10Z) - Prog-QAOA: Framework for resource-efficient quantum optimization through classical programs [0.0]
Current quantum optimization algorithms require representing the original problem as a binary optimization problem, which is then converted into an equivalent Ising model suitable for the quantum device.
We propose to design classical programs for computing the objective function and certifying the constraints, and later compile them to quantum circuits.
This results in a new variant of the Quantum Approximate Optimization Algorithm (QAOA), which we name the Prog-QAOA.
arXiv Detail & Related papers (2022-09-07T18:01:01Z) - Algorithm for Constrained Markov Decision Process with Linear
Convergence [55.41644538483948]
An agent aims to maximize the expected accumulated discounted reward subject to multiple constraints on its costs.
A new dual approach is proposed with the integration of two ingredients: entropy regularized policy and Vaidya's dual.
The proposed approach is shown to converge (with linear rate) to the global optimum.
arXiv Detail & Related papers (2022-06-03T16:26:38Z) - A Constrained Optimization Approach to Bilevel Optimization with
Multiple Inner Minima [49.320758794766185]
We propose a new approach, which convert the bilevel problem to an equivalent constrained optimization, and then the primal-dual algorithm can be used to solve the problem.
Such an approach enjoys a few advantages including (a) addresses the multiple inner minima challenge; (b) fully first-order efficiency without Jacobian computations.
arXiv Detail & Related papers (2022-03-01T18:20:01Z) - Faster Algorithm and Sharper Analysis for Constrained Markov Decision
Process [56.55075925645864]
The problem of constrained decision process (CMDP) is investigated, where an agent aims to maximize the expected accumulated discounted reward subject to multiple constraints.
A new utilities-dual convex approach is proposed with novel integration of three ingredients: regularized policy, dual regularizer, and Nesterov's gradient descent dual.
This is the first demonstration that nonconcave CMDP problems can attain the lower bound of $mathcal O (1/epsilon)$ for all complexity optimization subject to convex constraints.
arXiv Detail & Related papers (2021-10-20T02:57:21Z) - Quadratic Unconstrained Binary Optimisation via Quantum-Inspired
Annealing [58.720142291102135]
We present a classical algorithm to find approximate solutions to instances of quadratic unconstrained binary optimisation.
We benchmark our approach for large scale problem instances with tuneable hardness and planted solutions.
arXiv Detail & Related papers (2021-08-18T09:26:17Z) - Conditional gradient methods for stochastically constrained convex
minimization [54.53786593679331]
We propose two novel conditional gradient-based methods for solving structured convex optimization problems.
The most important feature of our framework is that only a subset of the constraints is processed at each iteration.
Our algorithms rely on variance reduction and smoothing used in conjunction with conditional gradient steps, and are accompanied by rigorous convergence guarantees.
arXiv Detail & Related papers (2020-07-07T21:26:35Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z) - Quantum approximate algorithm for NP optimization problems with
constraints [12.294570891467604]
In this paper, we formalize different constraint types to equalities, linear inequalities, and arbitrary form.
Based on this, we propose constraint-encoding schemes well-fitting into the QAOA framework for solving NP optimization problems.
The implemented algorithms demonstrate the effectiveness and efficiency of the proposed scheme.
arXiv Detail & Related papers (2020-02-01T04:45:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.