Predictions as Surrogates: Revisiting Surrogate Outcomes in the Age of AI
- URL: http://arxiv.org/abs/2501.09731v1
- Date: Thu, 16 Jan 2025 18:30:33 GMT
- Title: Predictions as Surrogates: Revisiting Surrogate Outcomes in the Age of AI
- Authors: Wenlong Ji, Lihua Lei, Tijana Zrnic,
- Abstract summary: We establish a formal connection between the decades-old surrogate outcome model in biostatistics and the emerging field of prediction-powered inference (PPI)
We develop recalibrated prediction-powered inference, a more efficient approach to statistical inference than existing PPI proposals.
We demonstrate significant gains in effective sample size over existing PPI proposals via three applications leveraging state-of-the-art machine learning/AI models.
- Score: 12.569286058146343
- License:
- Abstract: We establish a formal connection between the decades-old surrogate outcome model in biostatistics and economics and the emerging field of prediction-powered inference (PPI). The connection treats predictions from pre-trained models, prevalent in the age of AI, as cost-effective surrogates for expensive outcomes. Building on the surrogate outcomes literature, we develop recalibrated prediction-powered inference, a more efficient approach to statistical inference than existing PPI proposals. Our method departs from the existing proposals by using flexible machine learning techniques to learn the optimal ``imputed loss'' through a step we call recalibration. Importantly, the method always improves upon the estimator that relies solely on the data with available true outcomes, even when the optimal imputed loss is estimated imperfectly, and it achieves the smallest asymptotic variance among PPI estimators if the estimate is consistent. Computationally, our optimization objective is convex whenever the loss function that defines the target parameter is convex. We further analyze the benefits of recalibration, both theoretically and numerically, in several common scenarios where machine learning predictions systematically deviate from the outcome of interest. We demonstrate significant gains in effective sample size over existing PPI proposals via three applications leveraging state-of-the-art machine learning/AI models.
Related papers
- Prediction-Powered Adaptive Shrinkage Estimation [0.9208007322096532]
Prediction-Powered Adaptive Shrinkage (PAS) is a method that bridges PPI with empirical Bayes shrinkage to improve the estimation of multiple means.
PAS adapts to the reliability of the ML predictions and outperforms traditional and modern baselines in large-scale applications.
arXiv Detail & Related papers (2025-02-20T00:24:05Z) - Smart Predict-then-Optimize Method with Dependent Data: Risk Bounds and Calibration of Autoregression [7.369846475695131]
We present an autoregressive SPO method directly targeting the optimization problem at the decision stage.
We conduct experiments to demonstrate the effectiveness of the SPO+ surrogate compared to the absolute loss and the least squares loss.
arXiv Detail & Related papers (2024-11-19T17:02:04Z) - Imputation for prediction: beware of diminishing returns [12.424671213282256]
Missing values are prevalent across various fields, posing challenges for training and deploying predictive models.
Recent theoretical and empirical studies indicate that simple constant imputation can be consistent and competitive.
This study aims at clarifying if and when investing in advanced imputation methods yields significantly better predictions.
arXiv Detail & Related papers (2024-07-29T09:01:06Z) - Stratified Prediction-Powered Inference for Hybrid Language Model Evaluation [62.2436697657307]
Prediction-powered inference (PPI) is a method that improves statistical estimates based on limited human-labeled data.
We propose a method called Stratified Prediction-Powered Inference (StratPPI)
We show that the basic PPI estimates can be considerably improved by employing simple data stratification strategies.
arXiv Detail & Related papers (2024-06-06T17:37:39Z) - Reduced-Rank Multi-objective Policy Learning and Optimization [57.978477569678844]
In practice, causal researchers do not have a single outcome in mind a priori.
In government-assisted social benefit programs, policymakers collect many outcomes to understand the multidimensional nature of poverty.
We present a data-driven dimensionality-reduction methodology for multiple outcomes in the context of optimal policy learning.
arXiv Detail & Related papers (2024-04-29T08:16:30Z) - PPI++: Efficient Prediction-Powered Inference [31.403415618169433]
We present PPI++: a methodology for estimation and inference based on a small labeled dataset and a typically much larger dataset of machine-learning predictions.
The methods automatically adapt to the quality of available predictions, yielding easy-to-compute confidence sets.
PPI++ builds on prediction-powered inference (PPI), which targets the same problem setting, improving its computational and statistical efficiency.
arXiv Detail & Related papers (2023-11-02T17:59:04Z) - Prediction-Oriented Bayesian Active Learning [51.426960808684655]
Expected predictive information gain (EPIG) is an acquisition function that measures information gain in the space of predictions rather than parameters.
EPIG leads to stronger predictive performance compared with BALD across a range of datasets and models.
arXiv Detail & Related papers (2023-04-17T10:59:57Z) - Uncertainty-Aware Instance Reweighting for Off-Policy Learning [63.31923483172859]
We propose a Uncertainty-aware Inverse Propensity Score estimator (UIPS) for improved off-policy learning.
Experiment results on synthetic and three real-world recommendation datasets demonstrate the advantageous sample efficiency of the proposed UIPS estimator.
arXiv Detail & Related papers (2023-03-11T11:42:26Z) - Double Robust Representation Learning for Counterfactual Prediction [68.78210173955001]
We propose a novel scalable method to learn double-robust representations for counterfactual predictions.
We make robust and efficient counterfactual predictions for both individual and average treatment effects.
The algorithm shows competitive performance with the state-of-the-art on real world and synthetic data.
arXiv Detail & Related papers (2020-10-15T16:39:26Z) - Nonparametric inverse probability weighted estimators based on the
highly adaptive lasso [0.966840768820136]
Inparametric inverse probability weighted estimators are known to be inefficient and suffer from the curse of dimensionality.
We propose a class of nonparametric inverse probability weighted estimators in which the weighting mechanism is estimated via undersmoothing of the highly adaptive lasso.
Our developments have broad implications for the construction of efficient inverse probability weighted estimators in large statistical models and a variety of problem settings.
arXiv Detail & Related papers (2020-05-22T17:49:46Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
Doubly-robust cross-fit estimators have been proposed to yield better statistical properties.
We conducted a simulation study to assess the performance of several estimators for the average causal effect (ACE)
When used with machine learning, the doubly-robust cross-fit estimators substantially outperformed all of the other estimators in terms of bias, variance, and confidence interval coverage.
arXiv Detail & Related papers (2020-04-21T23:09:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.