論文の概要: FAST: Efficient Action Tokenization for Vision-Language-Action Models
- arxiv url: http://arxiv.org/abs/2501.09747v1
- Date: Thu, 16 Jan 2025 18:57:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-17 15:09:04.559951
- Title: FAST: Efficient Action Tokenization for Vision-Language-Action Models
- Title(参考訳): FAST:ビジョン・ランゲージ・アクション・モデルのための効果的なアクション・トークン化
- Authors: Karl Pertsch, Kyle Stachowicz, Brian Ichter, Danny Driess, Suraj Nair, Quan Vuong, Oier Mees, Chelsea Finn, Sergey Levine,
- Abstract要約: 離散コサイン変換に基づくロボット動作のための圧縮に基づく新しいトークン化手法を提案する。
FASTをベースとしたFAST+は,100万個のリアルロボットアクショントラジェクトリに基づいて訓練されたユニバーサルロボットアクショントークンである。
- 参考スコア(独自算出の注目度): 98.15494168962563
- License:
- Abstract: Autoregressive sequence models, such as Transformer-based vision-language action (VLA) policies, can be tremendously effective for capturing complex and generalizable robotic behaviors. However, such models require us to choose a tokenization of our continuous action signals, which determines how the discrete symbols predicted by the model map to continuous robot actions. We find that current approaches for robot action tokenization, based on simple per-dimension, per-timestep binning schemes, typically perform poorly when learning dexterous skills from high-frequency robot data. To address this challenge, we propose a new compression-based tokenization scheme for robot actions, based on the discrete cosine transform. Our tokenization approach, Frequency-space Action Sequence Tokenization (FAST), enables us to train autoregressive VLAs for highly dexterous and high-frequency tasks where standard discretization methods fail completely. Based on FAST, we release FAST+, a universal robot action tokenizer, trained on 1M real robot action trajectories. It can be used as a black-box tokenizer for a wide range of robot action sequences, with diverse action spaces and control frequencies. Finally, we show that, when combined with the pi0 VLA, our method can scale to training on 10k hours of robot data and match the performance of diffusion VLAs, while reducing training time by up to 5x.
- Abstract(参考訳): トランスフォーマーに基づく視覚言語行動(VLA)ポリシーのような自己回帰シーケンスモデルは、複雑で一般化可能なロボットの振る舞いを捉えるのに非常に効果的である。
しかし、そのようなモデルでは、連続的な動作信号のトークン化を選択し、モデルによって予測される離散的なシンボルが連続的なロボット動作にどのようにマッピングされるかを決定する必要がある。
ロボットのアクショントークン化に対する現在のアプローチは、単純な1次元、時間ごとのビンニング方式に基づいており、高頻度のロボットデータから巧妙なスキルを学ぶ場合、一般的には不十分である。
この課題に対処するために、離散コサイン変換に基づくロボット動作のための新しい圧縮ベースのトークン化手法を提案する。
我々のトークン化アプローチである周波数空間アクションシーケンストークン化(FAST)により、標準的な離散化手法が完全に失敗する高精度かつ高周波なタスクに対して、自己回帰VLAを訓練することができる。
FASTをベースとしたFAST+は,100万個のリアルロボットアクショントラジェクトリに基づいて訓練されたユニバーサルロボットアクショントークンである。
多様なアクション空間と制御周波数を備えた、幅広いロボットアクションシーケンスのブラックボックストークンライザとして使用できる。
最後に、pi0 VLAと組み合わせることで、ロボットデータの10k時間でのトレーニングにスケールでき、拡散VLAの性能と一致し、最大5倍のトレーニング時間を短縮できることを示す。
関連論文リスト
- One-Step Diffusion Policy: Fast Visuomotor Policies via Diffusion Distillation [80.71541671907426]
OneStep Diffusion Policy (OneDP)は、事前訓練された拡散政策から知識を単一ステップのアクションジェネレータに蒸留する新しいアプローチである。
OneDPはロボット制御タスクの応答時間を著しく短縮する。
論文 参考訳(メタデータ) (2024-10-28T17:54:31Z) - Latent Action Pretraining from Videos [156.88613023078778]
一般行動モデル(LAPA)のための潜在行動事前訓練について紹介する。
LAPA(英: LAPA)は、VLA(Vision-Language-Action)モデルに接地型ロボットアクションラベルを含まない教師なしの訓練方法である。
本稿では,ロボットアクションラベルを持たないインターネット規模のビデオから学習する手法を提案する。
論文 参考訳(メタデータ) (2024-10-15T16:28:09Z) - RDT-1B: a Diffusion Foundation Model for Bimanual Manipulation [23.554917579133576]
本稿では,ロボット拡散変換器(RDT)について述べる。
RDTは、マルチモーダリティを効果的に表現するために拡散モデルを構築し、スケーラブルトランスフォーマーの革新的な設計である。
さらに,様々なロボットの動作表現を統一する物理解釈可能な統一行動空間を導入する。
論文 参考訳(メタデータ) (2024-10-10T12:33:46Z) - Autoregressive Action Sequence Learning for Robotic Manipulation [32.9580007141312]
既存の自己回帰型アーキテクチャは、言語モデリングにおいて単語トークンとして順次、エンドエフェクタ・ウェイポイントを生成する。
我々は、因果変換器の単一トークン予測を拡張し、単一のステップで可変数のトークンを予測する。
本稿では,ハイブリッドなアクションシーケンスを生成することで操作タスクを解消するAutoregressive Policyアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-10-04T04:07:15Z) - Affordance-based Robot Manipulation with Flow Matching [6.863932324631107]
本稿では,ロボット操作支援のためのフレームワークを提案する。
第1に,大規模モデルを下流シーンの空き時間理解タスクに効果的に適用し,第2に,視覚的空き時間モデルに基づいて,効果的にロボット軌道を学習する。
本フレームワークは,ロボット操作のためのフローマッチングにより,相性モデル学習と軌道生成をシームレスに統合する。
論文 参考訳(メタデータ) (2024-09-02T09:11:28Z) - Robotic Control via Embodied Chain-of-Thought Reasoning [86.6680905262442]
学習したロボット制御ポリシーの鍵となる制限は、トレーニングデータの外部で一般化できないことである。
視覚言語行動モデル(VLA)に関する最近の研究は、大規模なインターネット事前学習型視覚言語モデルを使用することで、その堅牢性と一般化能力を大幅に向上させることができることを示した。
ロボットの動作を予測する前に、VLAに対して、計画、サブタスク、動作、視覚的接地機能について複数の推論を行うために、VLAに対してEmbodied Chain-of-Thought Reasoning (ECoT)を導入する。
論文 参考訳(メタデータ) (2024-07-11T17:31:01Z) - Robot Learning with Sensorimotor Pre-training [98.7755895548928]
ロボット工学のための自己教師型感覚運動器事前学習手法を提案する。
我々のモデルはRTTと呼ばれ、センサモレータトークンのシーケンスで動作するトランスフォーマーである。
感覚運動の事前学習は、ゼロからトレーニングを一貫して上回り、優れたスケーリング特性を持ち、さまざまなタスク、環境、ロボット間での移動を可能にしている。
論文 参考訳(メタデータ) (2023-06-16T17:58:10Z) - Leveraging Sequentiality in Reinforcement Learning from a Single
Demonstration [68.94506047556412]
本稿では,複雑なロボットタスクの制御ポリシーを1つの実演で学習するために,シーケンシャルなバイアスを活用することを提案する。
本研究は, ヒューマノイド移動やスタンドアップなど, 模擬課題のいくつかを, 前例のないサンプル効率で解くことができることを示す。
論文 参考訳(メタデータ) (2022-11-09T10:28:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。