論文の概要: RobotDiffuse: Motion Planning for Redundant Manipulator based on Diffusion Model
- arxiv url: http://arxiv.org/abs/2412.19500v1
- Date: Fri, 27 Dec 2024 07:34:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-30 17:24:45.156528
- Title: RobotDiffuse: Motion Planning for Redundant Manipulator based on Diffusion Model
- Title(参考訳): ロボットディフューズ:拡散モデルに基づく冗長マニピュレータの運動計画
- Authors: Xiaohan Zhang, Xudong Mou, Rui Wang, Tianyu Wo, Ningbo Gu, Tiejun Wang, Cangbai Xu, Xudong Liu,
- Abstract要約: 冗長マニピュレータは、キネマティック性能と汎用性の向上を提供する。
これらのマニピュレータの動作計画は、DOFの増加と複雑な動的環境のために困難である。
本稿では,冗長マニピュレータにおける運動計画のための拡散モデルに基づくロボットディフューズを提案する。
- 参考スコア(独自算出の注目度): 13.110235244912474
- License:
- Abstract: Redundant manipulators, with their higher Degrees of Freedom (DOFs), offer enhanced kinematic performance and versatility, making them suitable for applications like manufacturing, surgical robotics, and human-robot collaboration. However, motion planning for these manipulators is challenging due to increased DOFs and complex, dynamic environments. While traditional motion planning algorithms struggle with high-dimensional spaces, deep learning-based methods often face instability and inefficiency in complex tasks. This paper introduces RobotDiffuse, a diffusion model-based approach for motion planning in redundant manipulators. By integrating physical constraints with a point cloud encoder and replacing the U-Net structure with an encoder-only transformer, RobotDiffuse improves the model's ability to capture temporal dependencies and generate smoother, more coherent motion plans. We validate the approach using a complex simulator, and release a new dataset with 35M robot poses and 0.14M obstacle avoidance scenarios. Experimental results demonstrate the effectiveness of RobotDiffuse and the promise of diffusion models for motion planning tasks. The code can be accessed at https://github.com/ACRoboT-buaa/RobotDiffuse.
- Abstract(参考訳): 冗長マニピュレータは、より高い自由度(DOF)を持ち、キネマティック性能と多目的性を提供し、製造、外科ロボティクス、人間とロボットのコラボレーションといった応用に適している。
しかしながら、これらのマニピュレータの動作計画は、DOFの増加と複雑な動的環境のために困難である。
従来の動き計画アルゴリズムは高次元空間で苦労するが、ディープラーニングベースの手法は複雑なタスクにおいて不安定性と非効率性に直面することが多い。
本稿では,冗長マニピュレータにおける運動計画のための拡散モデルに基づくロボットディフューズを提案する。
物理的制約をポイントクラウドエンコーダに統合し、U-Net構造をエンコーダのみのトランスフォーマーに置き換えることで、RobotDiffuseは、時間的依存関係をキャプチャし、よりスムーズで一貫性のある動作計画を生成するモデルの能力を向上させる。
複雑なシミュレーターを用いてアプローチを検証するとともに,35Mロボットのポーズと0.14M障害物回避シナリオを用いた新しいデータセットをリリースする。
実験により,ロボットディフューズの有効性と移動計画作業における拡散モデルの有効性が示された。
コードはhttps://github.com/ACRoboT-buaa/RobotDiffuseでアクセスすることができる。
関連論文リスト
- Simultaneous Multi-Robot Motion Planning with Projected Diffusion Models [57.45019514036948]
MRMP拡散(SMD)は、制約付き最適化を拡散サンプリングプロセスに統合し、運動学的に実現可能な軌道を生成する新しい手法である。
本稿では, ロボット密度, 障害物の複雑度, 動作制約の異なるシナリオ間の軌道計画アルゴリズムを評価するための総合的MRMPベンチマークを提案する。
論文 参考訳(メタデータ) (2025-02-05T20:51:28Z) - FAST: Efficient Action Tokenization for Vision-Language-Action Models [98.15494168962563]
離散コサイン変換に基づくロボット動作のための圧縮に基づく新しいトークン化手法を提案する。
FASTをベースとしたFAST+は,100万個のリアルロボットアクショントラジェクトリに基づいて訓練されたユニバーサルロボットアクショントークンである。
論文 参考訳(メタデータ) (2025-01-16T18:57:04Z) - Simultaneous Contact-Rich Grasping and Locomotion via Distributed
Optimization Enabling Free-Climbing for Multi-Limbed Robots [60.06216976204385]
移動, 把握, 接触問題を同時に解くための効率的な運動計画フレームワークを提案する。
ハードウェア実験において提案手法を実証し, より短い計画時間で, 傾斜角45degで自由クライミングを含む様々な動作を実現できることを示す。
論文 参考訳(メタデータ) (2022-07-04T13:52:10Z) - Model Predictive Control for Fluid Human-to-Robot Handovers [50.72520769938633]
人間の快適さを考慮に入れた計画運動は、人間ロボットのハンドオーバプロセスの一部ではない。
本稿では,効率的なモデル予測制御フレームワークを用いてスムーズな動きを生成することを提案する。
ユーザ数名の多様なオブジェクトに対して,人間とロボットのハンドオーバ実験を行う。
論文 参考訳(メタデータ) (2022-03-31T23:08:20Z) - OSCAR: Data-Driven Operational Space Control for Adaptive and Robust
Robot Manipulation [50.59541802645156]
オペレーショナル・スペース・コントロール(OSC)は、操作のための効果的なタスクスペース・コントローラとして使われてきた。
本稿では,データ駆動型OSCのモデル誤差を補償するOSC for Adaptation and Robustness (OSCAR)を提案する。
本手法は,様々なシミュレーション操作問題に対して評価し,制御器のベースラインの配列よりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2021-10-02T01:21:38Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
我々は、データ駆動型アプローチを用いて、異種ロボットチームをグローバルな目標に向けてナビゲートする、エンドツーエンドのオンラインモーションプランニングフレームワークを提案する。
モデル予測制御(SMPC)を用いて,ロボット力学を満たす制御入力を計算し,障害物回避時の不確実性を考慮した。
リカレントニューラルネットワークは、SMPC有限時間地平線解における将来の状態の不確かさを素早く推定するために用いられる。
ディープQ学習エージェントがハイレベルパスプランナーとして機能し、SMPCにロボットを望ましいグローバルな目標に向けて移動させる目標位置を提供する。
論文 参考訳(メタデータ) (2021-08-03T02:56:21Z) - An advantage actor-critic algorithm for robotic motion planning in dense
and dynamic scenarios [0.8594140167290099]
本稿では,既存のアクター批判アルゴリズムを改良し,複雑な動作計画に適合する。
ロボットが目標を達成するまでの処理時間を短縮し、動き計画においてより高い成功率を達成する。
論文 参考訳(メタデータ) (2021-02-05T12:30:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。