iTool: Boosting Tool Use of Large Language Models via Iterative Reinforced Fine-Tuning
- URL: http://arxiv.org/abs/2501.09766v2
- Date: Sun, 16 Feb 2025 13:51:09 GMT
- Title: iTool: Boosting Tool Use of Large Language Models via Iterative Reinforced Fine-Tuning
- Authors: Yirong Zeng, Xiao Ding, Yuxian Wang, Weiwen Liu, Wu Ning, Yutai Hou, Xu Huang, Bing Qin, Ting Liu,
- Abstract summary: Augmenting large language models with external tools is a promising approach to enhancing their capabilities.
We show that training gains significantly decay as synthetic data increases.
We propose an iterative reinforced fine-tuning strategy designed to alleviate these challenges.
- Score: 39.65877861652369
- License:
- Abstract: Augmenting large language models (LLMs) with external tools is known as a promising approach to enhancing their capabilities, especially for complex tasks. Synthesizing tool-use data through real-world simulations is an effective way to achieve it. Nevertheless, our investigation reveals that (1) training gains significantly decay as synthetic data increases. The model struggles to benefit from more synthetic data due to potential data diversity issues, resulting in poor performance in complex scenarios. Moreover, we find that (2) this challenge primarily manifests as minor discrepancies between the model's output and the ground truth response (termed as deficiency), such as errors in parameter values that require complex reasoning from the context to resolve. To this end, we propose an iterative reinforced fine-tuning strategy designed to alleviate these challenges. This strategy involves: (1) enhancing the diversity of synthetic data through path exploration of Monte Carlo Tree Search. (2) iteratively identifying deficiency-related data, constructing fine-grained preference pairs to pinpoint deficiencies, and then applying preference optimization to optimize these deficiencies. Our experiments show that models trained using our method achieve about 3\% better performance than same-size models, outperforming larger open-source and closed-source models.
Related papers
- OptMATH: A Scalable Bidirectional Data Synthesis Framework for Optimization Modeling [9.617742955894247]
Lack of high-quality optimization modeling datasets hampers large language models.
We propose a scalable framework for synthesizing a high-quality dataset, named OptMATH.
We demonstrate that models of various sizes trained on OptMATH achieve superior results on multiple modeling benchmarks.
arXiv Detail & Related papers (2025-02-16T12:38:37Z) - Exploring the Landscape for Generative Sequence Models for Specialized Data Synthesis [0.0]
This paper introduces a novel approach that leverages three generative models of varying complexity to synthesize Malicious Network Traffic.
Our approach transforms numerical data into text, re-framing data generation as a language modeling task.
Our method surpasses state-of-the-art generative models in producing high-fidelity synthetic data.
arXiv Detail & Related papers (2024-11-04T09:51:10Z) - Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
Large language models (LLMs) have significantly benefited from training on diverse, high-quality task-specific data.
We present a novel approach, ReverseGen, designed to automatically generate effective training samples.
arXiv Detail & Related papers (2024-10-22T06:43:28Z) - Unveiling the Flaws: Exploring Imperfections in Synthetic Data and Mitigation Strategies for Large Language Models [89.88010750772413]
Synthetic data has been proposed as a solution to address the issue of high-quality data scarcity in the training of large language models (LLMs)
Our work delves into these specific flaws associated with question-answer (Q-A) pairs, a prevalent type of synthetic data, and presents a method based on unlearning techniques to mitigate these flaws.
Our work has yielded key insights into the effective use of synthetic data, aiming to promote more robust and efficient LLM training.
arXiv Detail & Related papers (2024-06-18T08:38:59Z) - Let's Synthesize Step by Step: Iterative Dataset Synthesis with Large
Language Models by Extrapolating Errors from Small Models [69.76066070227452]
*Data Synthesis* is a promising way to train a small model with very little labeled data.
We propose *Synthesis Step by Step* (**S3**), a data synthesis framework that shrinks this distribution gap.
Our approach improves the performance of a small model by reducing the gap between the synthetic dataset and the real data.
arXiv Detail & Related papers (2023-10-20T17:14:25Z) - Does Synthetic Data Make Large Language Models More Efficient? [0.0]
This paper explores the nuances of synthetic data generation in NLP.
We highlight its advantages, including data augmentation potential and the introduction of structured variety.
We demonstrate the impact of template-based synthetic data on the performance of modern transformer models.
arXiv Detail & Related papers (2023-10-11T19:16:09Z) - Synthetic data, real errors: how (not) to publish and use synthetic data [86.65594304109567]
We show how the generative process affects the downstream ML task.
We introduce Deep Generative Ensemble (DGE) to approximate the posterior distribution over the generative process model parameters.
arXiv Detail & Related papers (2023-05-16T07:30:29Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - Learning Distributionally Robust Models at Scale via Composite
Optimization [45.47760229170775]
We show how different variants of DRO are simply instances of a finite-sum composite optimization for which we provide scalable methods.
We also provide empirical results that demonstrate the effectiveness of our proposed algorithm with respect to the prior art in order to learn robust models from very large datasets.
arXiv Detail & Related papers (2022-03-17T20:47:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.