論文の概要: Sentiment Analysis in Twitter Social Network Centered on Cryptocurrencies Using Machine Learning
- arxiv url: http://arxiv.org/abs/2501.09777v1
- Date: Thu, 16 Jan 2025 16:15:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-20 14:00:02.488199
- Title: Sentiment Analysis in Twitter Social Network Centered on Cryptocurrencies Using Machine Learning
- Title(参考訳): 機械学習を用いた暗号通貨を中心にしたTwitterソーシャルネットワークの感性分析
- Authors: Vahid Amiri, Mahmood Ahmadi,
- Abstract要約: 本稿では,Twitter上での暗号通貨に関するイラン人の意見を考察する。
感情に基づいてツイートを分類する最良のモデルを提供する。
- 参考スコア(独自算出の注目度): 1.9336815376402718
- License:
- Abstract: Cryptocurrency is a digital currency that uses blockchain technology with secure encryption. Due to the decentralization of these currencies, traditional monetary systems and the capital market of each they, can influence a society. Therefore, due to the importance of the issue, the need to understand public opinion and analyze people's opinions in this regard increases. To understand the opinions and views of people about different topics, you can take help from social networks because they are a rich source of opinions. The Twitter social network is one of the main platforms where users discuss various topics, therefore, in the shortest time and with the lowest cost, the opinion of the community can be measured on this social network. Twitter Sentiment Analysis (TSA) is a field that analyzes the sentiment expressed in tweets. Considering that most of TSA's research efforts on cryptocurrencies are focused on English language, the purpose of this paper is to investigate the opinions of Iranian users on the Twitter social network about cryptocurrencies and provide the best model for classifying tweets based on sentiment. In the case of automatic analysis of tweets, managers and officials in the field of economy can gain knowledge from the general public's point of view about this issue and use the information obtained in order to properly manage this phenomenon. For this purpose, in this paper, in order to build emotion classification models, natural language processing techniques such as bag of words (BOW) and FastText for text vectorization and classical machine learning algorithms including KNN, SVM and Adaboost learning methods Deep including LSTM and BERT model were used for classification, and finally BERT linguistic model had the best accuracy with 83.50%.
- Abstract(参考訳): 暗号通貨(Cryptocurrency)は、セキュアな暗号化でブロックチェーン技術を使用するデジタル通貨である。
これらの通貨の分散化により、伝統的な金融制度とそれぞれの資本市場は社会に影響を及ぼす可能性がある。
そのため、この問題の重要性から、世論を理解・分析する必要性が高まっている。
異なるトピックに関する人々の意見や見解を理解するために、ソーシャルネットワークの助けを借りることができる。
Twitterのソーシャルネットワークは、ユーザーが様々な話題を議論する主要なプラットフォームの一つであり、最短かつ低コストで、このソーシャルネットワーク上でコミュニティの意見を測定することができる。
Twitter Sentiment Analysis (TSA)は、ツイートで表現された感情を分析する分野である。
TSAの暗号通貨研究の大部分が英語に重点を置いていることから,本論文の目的は,Twitter上でのイラン人利用者の暗号通貨に関する意見を調査し,感情に基づくつぶやきの分類に最適なモデルを提供することである。
つぶやきの自動分析の場合、経済分野の管理者や役人は、この問題に関する一般の視点から知識を得ることができ、この現象を適切に管理するために得られた情報を利用することができる。
本研究では、感情分類モデルを構築するために、テキストベクトル化のためのbacker of words(BOW)やFastTextなどの自然言語処理技術と、KNN、SVM、Adaboostといった古典的機械学習アルゴリズムを用いて、LSTM、BERTを含むDeepを分類し、最終的にBERT言語モデルが最も精度が83.50%に達した。
関連論文リスト
- IT Strategic alignment in the decentralized finance (DeFi): CBDC and digital currencies [49.1574468325115]
分散型金融(DeFi)は、ディスラプティブベースの金融インフラである。
1) DeFiの一般的なIT要素は何か?
2) DeFi における IT 戦略の整合性には,どのような要素があるのでしょう?
論文 参考訳(メタデータ) (2024-05-17T10:19:20Z) - Utilizing deep learning models for the identification of enhancers and
super-enhancers based on genomic and epigenomic features [0.0]
本稿では,9つの広く認識されている暗号通貨に着目した,英語のつぶやきの膨大なデータセットを広範囲に検証する。
我々の主な目的は、これらの暗号通貨に関連するソーシャルメディアコンテンツの心理言語学的・感情分析を行うことであった。
この研究は、様々なデジタルコインの言語特性を比較し、各コインのコミュニティに現れる独特の言語パターンに光を当てた。
論文 参考訳(メタデータ) (2024-01-15T04:58:50Z) - Deep Learning and NLP in Cryptocurrency Forecasting: Integrating Financial, Blockchain, and Social Media Data [3.6390165502400875]
本稿では,機械学習(ML)と自然言語処理(NLP)技術を活用した暗号通貨価格予測の新しい手法を提案する。
ニュースやソーシャルメディアのコンテンツを分析することで、仮想通貨市場に対する大衆の感情の影響を評価する。
論文 参考訳(メタデータ) (2023-11-23T16:14:44Z) - Unsupervised Sentiment Analysis of Plastic Surgery Social Media Posts [91.3755431537592]
ソーシャルメディアプラットフォームにまたがる膨大なユーザー投稿は、主に人工知能(AI)のユースケースに使われていない。
自然言語処理(NLP)は、コーパス(corpora)として知られるドキュメントの体系を利用して、人間のような言語理解でコンピュータを訓練するAIのサブフィールドである。
本研究は, 教師なし解析の応用により, コンピュータがプラスティック手術に対する否定的, 肯定的, 中立的なユーザ感情を予測できることを示した。
論文 参考訳(メタデータ) (2023-07-05T20:16:20Z) - Causality between Sentiment and Cryptocurrency Prices [0.0]
本研究では,マイクロブログプラットフォーム,すなわちTwitterを通じて伝達される物語と暗号資産の価値の関係について検討する。
教師なしの機械学習アルゴリズムを使って、Twitterの巨大でノイズの多いテキストデータの中に潜伏するトピックを発見しました。
さまざまな状況において、私たちの物語と暗号通貨価格の間に強いつながりがあることに気づきました。
論文 参考訳(メタデータ) (2023-06-09T10:40:22Z) - Identification of Twitter Bots based on an Explainable ML Framework: the
US 2020 Elections Case Study [72.61531092316092]
本稿では,ラベル付きTwitterデータに基づくTwitterボット識別システムの設計に焦点をあてる。
Supervised Machine Learning (ML)フレームワークは、Extreme Gradient Boosting (XGBoost)アルゴリズムを用いて採用されている。
また、MLモデルの予測を説明するためにShapley Additive Explanations (SHAP)をデプロイした。
論文 参考訳(メタデータ) (2021-12-08T14:12:24Z) - Ask "Who", Not "What": Bitcoin Volatility Forecasting with Twitter Data [2.9223917785251285]
我々は、Twitterの公開ソーシャルメディアデータのディープラーニング表現を使用して、比較的新しい資産クラスの暗号通貨(特にBitcoin)のボラティリティ予測に重点を置いている。
フィールドワークのために、3000万以上のBitcoin関連ツイートからセマンティック情報とユーザーインタラクション統計を抽出した。
収集した情報を組み合わせて、いくつかのディープラーニングアーキテクチャを構築しました。
論文 参考訳(メタデータ) (2021-10-27T09:55:03Z) - The Doge of Wall Street: Analysis and Detection of Pump and Dump Cryptocurrency Manipulations [50.521292491613224]
本稿では,インターネット上のコミュニティによって組織された2つの市場操作(ポンプとダンプと群衆ポンプ)について,詳細な分析を行う。
ポンプとダンプの仕組みは、株式市場と同じくらい古い詐欺だ。今や、緩やかに規制された暗号通貨市場において、新たな活力を得た。
本報告では,ポンプ群とダンプ群に関する3症例について報告する。
論文 参考訳(メタデータ) (2021-05-03T10:20:47Z) - LSTM Based Sentiment Analysis for Cryptocurrency Prediction [11.811501670389935]
この研究は、ソーシャルメディアの感情を分析することによって、暗号通貨の揮発性価格の動きを予測することを目的としています。
本稿では,中国のソーシャルメディアプラットフォームSina-Weiboにおける,中国のソーシャルメディア投稿の感情を識別する手法を提案する。
Weiboポストをキャプチャし、暗号固有の感情辞書の作成を記述したパイプラインを開発し、Long Short-term memory(LSTM)ベースのリカレントニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2021-03-27T04:08:37Z) - Pump and Dumps in the Bitcoin Era: Real Time Detection of Cryptocurrency Market Manipulations [50.521292491613224]
インターネット上のコミュニティによって組織されたポンプとダンプの詳細な分析を行う。
これらのコミュニティがどのように組織化され、どのように詐欺を行うかを観察します。
本研究では,不正行為をリアルタイムに検出する手法を提案する。
論文 参考訳(メタデータ) (2020-05-04T21:36:18Z) - Echo Chambers on Social Media: A comparative analysis [64.2256216637683]
本研究では,4つのソーシャルメディアプラットフォーム上で100万ユーザが生成した100万個のコンテンツに対して,エコーチャンバーの操作的定義を導入し,大規模な比較分析を行う。
議論の的になっているトピックについてユーザの傾きを推測し、異なる特徴を分析してインタラクションネットワークを再構築する。
我々は、Facebookのようなニュースフィードアルゴリズムを実装するプラットフォームが、エコーチャンバの出現を招きかねないという仮説を支持する。
論文 参考訳(メタデータ) (2020-04-20T20:00:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。