論文の概要: Lossy Compression with Pretrained Diffusion Models
- arxiv url: http://arxiv.org/abs/2501.09815v1
- Date: Thu, 16 Jan 2025 20:02:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-20 13:59:04.889596
- Title: Lossy Compression with Pretrained Diffusion Models
- Title(参考訳): 予混合拡散モデルによるロッシー圧縮
- Authors: Jeremy Vonderfecht, Feng Liu,
- Abstract要約: 事前訓練した拡散モデルを用いた損失圧縮の原理的アルゴリズムは,少なくとも Ho 等から理解されている。
DiffCの最初の完全な実装につながる簡単な回避策を紹介します。
追加の訓練は必要としないが,本手法は,超低速で他の最先端の生成圧縮法と競合する。
- 参考スコア(独自算出の注目度): 4.673285689826945
- License:
- Abstract: We apply the DiffC algorithm (Theis et al. 2022) to Stable Diffusion 1.5, 2.1, XL, and Flux-dev, and demonstrate that these pretrained models are remarkably capable lossy image compressors. A principled algorithm for lossy compression using pretrained diffusion models has been understood since at least Ho et al. 2020, but challenges in reverse-channel coding have prevented such algorithms from ever being fully implemented. We introduce simple workarounds that lead to the first complete implementation of DiffC, which is capable of compressing and decompressing images using Stable Diffusion in under 10 seconds. Despite requiring no additional training, our method is competitive with other state-of-the-art generative compression methods at low ultra-low bitrates.
- Abstract(参考訳): 我々は,DiffC アルゴリズム (Theis et al 2022) を安定拡散 1.5, 2.1, XL, Flux-dev に適用し,これらの事前学習されたモデルが著しく損失のある画像圧縮機であることを実証した。
事前訓練された拡散モデルを用いた損失圧縮のアルゴリズムは、少なくともHo et al 2020から理解されているが、逆チャネル符号化の課題は、そのようなアルゴリズムが完全に実装されることを妨げている。
DiffCの最初の完全な実装に繋がる簡単な回避策を導入し、安定拡散を用いて画像を10秒以内で圧縮・圧縮できる。
追加の訓練は必要としないが,本手法は,低極低ビットレートでの他の最先端の生成圧縮手法と競合する。
関連論文リスト
- Compression-Aware One-Step Diffusion Model for JPEG Artifact Removal [56.307484956135355]
CODiffはJPEGアーティファクト削除のための圧縮対応ワンステップ拡散モデルである。
明示的な学習と暗黙的な学習を組み合わせた二重学習戦略を提案する。
その結果,CODiffは定量的および視覚的品質指標の両方において,最近の先行手法を超越していることがわかった。
論文 参考訳(メタデータ) (2025-02-14T02:46:27Z) - Token Compensator: Altering Inference Cost of Vision Transformer without Re-Tuning [63.43972993473501]
視覚変換器(ViT)の訓練と推論を高速化するトークン圧縮
しかし、下流タスクに適用した場合、圧縮度はトレーニングと推論の段階で不一致となる。
本稿では,2段階間の圧縮度を分離するモデル演算フレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-13T10:36:43Z) - Towards Extreme Image Compression with Latent Feature Guidance and Diffusion Prior [8.772652777234315]
本稿では,事前学習した拡散モデルの強力な生成能力を生かした,新しい2段階の極端画像圧縮フレームワークを提案する。
本手法は, 視覚的性能を極端に低め, 最先端の手法よりも優れていた。
論文 参考訳(メタデータ) (2024-04-29T16:02:38Z) - Correcting Diffusion-Based Perceptual Image Compression with Privileged End-to-End Decoder [49.01721042973929]
本稿では,特権付きエンド・ツー・エンド・エンド・デコーダ・モデルを用いた拡散型画像圧縮法を提案する。
従来の知覚圧縮法と比較して,歪みと知覚の両方において,本手法の優位性を示す実験を行った。
論文 参考訳(メタデータ) (2024-04-07T10:57:54Z) - Lossy and Lossless (L$^2$) Post-training Model Size Compression [12.926354646945397]
本稿では,無損失圧縮と無損失圧縮を統一的に組み合わせた後学習モデルサイズ圧縮法を提案する。
精度を犠牲にすることなく安定な10times$圧縮比を達成でき、短時間で20times$圧縮比を小さくすることができる。
論文 参考訳(メタデータ) (2023-08-08T14:10:16Z) - Deep Lossy Plus Residual Coding for Lossless and Near-lossless Image
Compression [85.93207826513192]
本稿では、損失のない画像圧縮とほぼロスレス画像圧縮の両面において、統合された強力な深い損失+残差(DLPR)符号化フレームワークを提案する。
VAEのアプローチにおける連立損失と残留圧縮の問題を解く。
ほぼロスレスモードでは、元の残差を量子化し、与えられた$ell_infty$エラー境界を満たす。
論文 参考訳(メタデータ) (2022-09-11T12:11:56Z) - Reducing The Amortization Gap of Entropy Bottleneck In End-to-End Image
Compression [2.1485350418225244]
エンド・ツー・エンドのディープ・トレーニング可能なモデルは、ビデオや画像の従来の手作り圧縮技術の性能をほぼ上回っている。
本稿では,このアモート化ギャップを小さなコストで低減する,シンプルで効率的なインスタンスベースのパラメータ化手法を提案する。
論文 参考訳(メタデータ) (2022-09-02T11:43:45Z) - Lossy Compression with Gaussian Diffusion [28.930398810600504]
非条件拡散生成モデルに基づく新しい損失圧縮手法DiffCについて述べる。
エンコーダ変換の欠如にもかかわらず、概念実証を実装し、驚くほどうまく機能することを発見した。
流れに基づく再構築は,祖先サンプリングよりも高頻度で3dBのゲインを達成できることを示す。
論文 参考訳(メタデータ) (2022-06-17T16:46:31Z) - iFlow: Numerically Invertible Flows for Efficient Lossless Compression
via a Uniform Coder [38.297114268193]
iFlowは効率的なロスレス圧縮を実現するための新しい方法である。
iFlowは最先端の圧縮比を達成し、他の高性能スキームよりも5倍速くなる。
論文 参考訳(メタデータ) (2021-11-01T14:15:58Z) - Learning Scalable $\ell_\infty$-constrained Near-lossless Image
Compression via Joint Lossy Image and Residual Compression [118.89112502350177]
本稿では,$ell_infty$-constrained near-lossless image compressionを学習するための新しいフレームワークを提案する。
元の残差の学習確率モデルを定量化し、量子化残差の確率モデルを導出する。
論文 参考訳(メタデータ) (2021-03-31T11:53:36Z) - PowerGossip: Practical Low-Rank Communication Compression in
Decentralized Deep Learning [62.440827696638664]
本稿では,近隣労働者間のモデル差を直接圧縮する簡単なアルゴリズムを提案する。
中央集権的なディープラーニングのためにPowerSGDにインスパイアされたこのアルゴリズムは、パワーステップを使用して、1ビットあたりの転送情報を最大化する。
論文 参考訳(メタデータ) (2020-08-04T09:14:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。