Lossy Compression with Pretrained Diffusion Models
- URL: http://arxiv.org/abs/2501.09815v1
- Date: Thu, 16 Jan 2025 20:02:13 GMT
- Title: Lossy Compression with Pretrained Diffusion Models
- Authors: Jeremy Vonderfecht, Feng Liu,
- Abstract summary: A principled algorithm for lossy compression using pretrained diffusion models has been understood since at least Ho et al. 2020.<n>We introduce simple workarounds that lead to the first complete implementation of DiffC.<n>Despite requiring no additional training, our method is competitive with other state-of-the-art generative compression methods at low ultra-lows.
- Score: 4.673285689826945
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We apply the DiffC algorithm (Theis et al. 2022) to Stable Diffusion 1.5, 2.1, XL, and Flux-dev, and demonstrate that these pretrained models are remarkably capable lossy image compressors. A principled algorithm for lossy compression using pretrained diffusion models has been understood since at least Ho et al. 2020, but challenges in reverse-channel coding have prevented such algorithms from ever being fully implemented. We introduce simple workarounds that lead to the first complete implementation of DiffC, which is capable of compressing and decompressing images using Stable Diffusion in under 10 seconds. Despite requiring no additional training, our method is competitive with other state-of-the-art generative compression methods at low ultra-low bitrates.
Related papers
- Steering One-Step Diffusion Model with Fidelity-Rich Decoder for Fast Image Compression [36.10674664089876]
SODEC is a novel single-step diffusion-based image compression model.<n>It improves fidelity resulting from over-reliance on generative priors.<n>It significantly outperforms existing methods, achieving superior rate-distortion-perception performance.
arXiv Detail & Related papers (2025-08-07T02:24:03Z) - StableCodec: Taming One-Step Diffusion for Extreme Image Compression [19.69733852050049]
Diffusion-based image compression has shown remarkable potential for achieving ultra-low coding (less than 0.05 bits per pixel) with high realism.<n>Current approaches require a large number of denoising steps at the decoder to generate realistic results under extreme constraints.<n>We introduce StableCodec, which enables one-step diffusion for high-fidelity and high-realism extreme image compression.
arXiv Detail & Related papers (2025-06-27T07:39:21Z) - DiffO: Single-step Diffusion for Image Compression at Ultra-Low Bitrates [7.344746778324299]
We propose the first single step diffusion model for image compression (DiffO) that delivers high perceptual quality and fast decoding at ultra lows.<n>Experiments show that DiffO surpasses state the art compression performance while improving decoding speed by 50x compared to prior diffusion-based methods.
arXiv Detail & Related papers (2025-06-19T19:53:27Z) - OSCAR: One-Step Diffusion Codec Across Multiple Bit-rates [52.65036099944483]
Pretrained latent diffusion models have shown strong potential for lossy image compression.<n>Most existing methods reconstruct images by iteratively denoising from random noise.<n>We propose a one-step diffusion across multiple bit-rates termed OSCAR.
arXiv Detail & Related papers (2025-05-22T00:14:12Z) - Multi-Scale Invertible Neural Network for Wide-Range Variable-Rate Learned Image Compression [90.59962443790593]
In this paper, we present a variable-rate image compression model based on invertible transform to overcome limitations.
Specifically, we design a lightweight multi-scale invertible neural network, which maps the input image into multi-scale latent representations.
Experimental results demonstrate that the proposed method achieves state-of-the-art performance compared to existing variable-rate methods.
arXiv Detail & Related papers (2025-03-27T09:08:39Z) - Compression-Aware One-Step Diffusion Model for JPEG Artifact Removal [56.307484956135355]
CODiff is a compression-aware one-step diffusion model for JPEG artifact removal.
We propose a dual learning strategy that combines explicit and implicit learning.
Results demonstrate that CODiff surpasses recent leading methods in both quantitative and visual quality metrics.
arXiv Detail & Related papers (2025-02-14T02:46:27Z) - Zero-Shot Image Compression with Diffusion-Based Posterior Sampling [34.50287066865267]
This work addresses the gap by harnessing the image prior learned by existing pre-trained diffusion models for solving the task of lossy image compression.
Our method, PSC (Posterior Sampling-based Compression), utilizes zero-shot diffusion-based posterior samplers.
PSC achieves competitive results compared to established methods, paving the way for further exploration of pre-trained diffusion models and posterior samplers for image compression.
arXiv Detail & Related papers (2024-07-13T14:24:22Z) - Towards Extreme Image Compression with Latent Feature Guidance and Diffusion Prior [8.772652777234315]
We propose a novel two-stage extreme image compression framework that exploits the powerful generative capability of pre-trained diffusion models.
Our method significantly outperforms state-of-the-art approaches in terms of visual performance at extremely lows.
arXiv Detail & Related papers (2024-04-29T16:02:38Z) - Correcting Diffusion-Based Perceptual Image Compression with Privileged End-to-End Decoder [49.01721042973929]
This paper presents a diffusion-based image compression method that employs a privileged end-to-end decoder model as correction.
Experiments demonstrate the superiority of our method in both distortion and perception compared with previous perceptual compression methods.
arXiv Detail & Related papers (2024-04-07T10:57:54Z) - Lossy and Lossless (L$^2$) Post-training Model Size Compression [12.926354646945397]
We propose a post-training model size compression method that combines lossy and lossless compression in a unified way.
Our method can achieve a stable $10times$ compression ratio without sacrificing accuracy and a $20times$ compression ratio with minor accuracy loss in a short time.
arXiv Detail & Related papers (2023-08-08T14:10:16Z) - Deep Lossy Plus Residual Coding for Lossless and Near-lossless Image
Compression [85.93207826513192]
We propose a unified and powerful deep lossy plus residual (DLPR) coding framework for both lossless and near-lossless image compression.
We solve the joint lossy and residual compression problem in the approach of VAEs.
In the near-lossless mode, we quantize the original residuals to satisfy a given $ell_infty$ error bound.
arXiv Detail & Related papers (2022-09-11T12:11:56Z) - Reducing The Amortization Gap of Entropy Bottleneck In End-to-End Image
Compression [2.1485350418225244]
End-to-end deep trainable models are about to exceed the performance of the traditional handcrafted compression techniques on videos and images.
We propose a simple yet efficient instance-based parameterization method to reduce this amortization gap at a minor cost.
arXiv Detail & Related papers (2022-09-02T11:43:45Z) - Lossy Compression with Gaussian Diffusion [28.930398810600504]
We describe a novel lossy compression approach called DiffC which is based on unconditional diffusion generative models.
We implement a proof of concept and find that it works surprisingly well despite the lack of an encoder transform.
We show that a flow-based reconstruction achieves a 3 dB gain over ancestral sampling at highs.
arXiv Detail & Related papers (2022-06-17T16:46:31Z) - iFlow: Numerically Invertible Flows for Efficient Lossless Compression
via a Uniform Coder [38.297114268193]
iFlow is a new method for achieving efficient lossless compression.
iFlow achieves state-of-the-art compression ratios and is $5times$ quicker than other high-performance schemes.
arXiv Detail & Related papers (2021-11-01T14:15:58Z) - Learning Scalable $\ell_\infty$-constrained Near-lossless Image
Compression via Joint Lossy Image and Residual Compression [118.89112502350177]
We propose a novel framework for learning $ell_infty$-constrained near-lossless image compression.
We derive the probability model of the quantized residual by quantizing the learned probability model of the original residual.
arXiv Detail & Related papers (2021-03-31T11:53:36Z) - PowerGossip: Practical Low-Rank Communication Compression in
Decentralized Deep Learning [62.440827696638664]
We introduce a simple algorithm that directly compresses the model differences between neighboring workers.
Inspired by the PowerSGD for centralized deep learning, this algorithm uses power steps to maximize the information transferred per bit.
arXiv Detail & Related papers (2020-08-04T09:14:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.