An Overview of CV-MDI-QKD
- URL: http://arxiv.org/abs/2501.09818v1
- Date: Thu, 16 Jan 2025 20:09:23 GMT
- Title: An Overview of CV-MDI-QKD
- Authors: Alasdair I. Fletcher, Cillian Harney, Masoud Ghalaii, Panagiotis Papanastasiou, Alexandros Mountogiannakis, Gaetana Spedalieri, Adnan A. E. Hajomer, Tobias Gehring, Stefano Pirandola,
- Abstract summary: Quantum key distribution (QKD) emerges as a robust defense against quantum computer threats.
This paper delves into the integration of these methodologies in the CV-MDI-QKD protocol.
It offers an in-depth exploration of its evolution, primary characteristics, and the latest advancements in both theory and experiment.
- Score: 32.73124984242397
- License:
- Abstract: As quantum key distribution (QKD) emerges as a robust defense against quantum computer threats, significant advancements have been realized by researchers. A pivotal focus has been the development of protocols that not only simplify hardware implementation like the use of continuous-variable (CV) systems, but also negate the necessity for trusted nodes, as seen with the measurement-device independent (MDI) approach. This paper delves into the integration of these methodologies in the CV-MDI-QKD protocol, offering an in-depth exploration of its evolution, primary characteristics, and the latest advancements in both theory and experiment.
Related papers
- High-Fidelity Coherent-One-Way QKD Simulation Framework for 6G Networks: Bridging Theory and Reality [105.73011353120471]
Quantum key distribution (QKD) has been emerged as a promising solution for guaranteeing information-theoretic security.
Due to the considerable high-cost of QKD equipment, a lack of QKD communication system design tools is challenging.
This paper introduces a QKD communication system design tool.
arXiv Detail & Related papers (2025-01-21T11:03:59Z) - The Evolution of Quantum Secure Direct Communication: On the Road to the Qinternet [49.8449750761258]
Quantum secure direct communication (QSDC) is provably secure and overcomes the threat of quantum computing.
We will detail the associated point-to-point communication protocols and show how information is protected and transmitted.
arXiv Detail & Related papers (2023-11-23T12:40:47Z) - High-rate discretely-modulated continuous-variable quantum key
distribution using quantum machine learning [4.236937886028215]
We propose a high-rate scheme for discretely-modulated continuous-variable quantum key distribution (DM CVQKD) using quantum machine learning technologies.
A low-complexity quantum k-nearest neighbor (QkNN) is designed for predicting the lossy discretely-modulated coherent states (DMCSs) at Bob's side.
Numerical simulation shows that the secret key rate of our proposed scheme is explicitly superior to the existing DM CVQKD protocols.
arXiv Detail & Related papers (2023-08-07T04:00:13Z) - Practical quantum secure direct communication with squeezed states [55.41644538483948]
We report the first table-top experimental demonstration of a CV-QSDC system and assess its security.
This realization paves the way into future threat-less quantum metropolitan networks, compatible with coexisting advanced wavelength division multiplexing (WDM) systems.
arXiv Detail & Related papers (2023-06-25T19:23:42Z) - High-rate continuous-variable measurement device-independent quantum key distribution with finite-size security [0.0]
Continuous-variable (CV) measurement-device-independent (MDI) QKD is a promising candidate for creating various quantum network topologies.
Here, we report the first experimental validation of a CV MDI-QKD system, achieving a secure key rate of 2.6 Mbit/s against collective attacks.
arXiv Detail & Related papers (2023-03-02T22:20:29Z) - Single-photon-memory measurement-device-independent quantum secure
direct communication [63.75763893884079]
Quantum secure direct communication (QSDC) uses the quantum channel to transmit information reliably and securely.
In order to eliminate the security loopholes resulting from practical detectors, the measurement-device-independent (MDI) QSDC protocol has been proposed.
We propose a single-photon-memory MDI QSDC protocol (SPMQC) for dispensing with high-performance quantum memory.
arXiv Detail & Related papers (2022-12-12T02:23:57Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - Reference-Frame-Independent, Measurement-Device-Independent quantum key
distribution using fewer quantum states [1.1242503819703258]
We show that RFI-MDI-QKD can be implemented using fewer quantum states than those of its original proposal.
Compared to the conventional RFI-MDI-QKD where both parties should transmit six quantum states, it significantly simplifies the implementation of the QKD protocol.
arXiv Detail & Related papers (2020-02-05T01:44:29Z) - Measurement-Device-Independent Quantum Key Distribution with Leaky
Sources [0.0]
Measurement-device-independent quantum key distribution (MDI-QKD) can remove all detection side-channels from quantum communication systems.
We show that MDI-QKD is feasible within a reasonable time frame of signal transmission given that the sources are sufficiently isolated.
arXiv Detail & Related papers (2020-01-21T08:19:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.