Reference-Frame-Independent, Measurement-Device-Independent quantum key
distribution using fewer quantum states
- URL: http://arxiv.org/abs/2002.01601v2
- Date: Thu, 7 May 2020 02:03:12 GMT
- Title: Reference-Frame-Independent, Measurement-Device-Independent quantum key
distribution using fewer quantum states
- Authors: Donghwa Lee, Seong-Jin Hong, Young-Wook Cho, Hyang-Tag Lim, Sang-Wook
Han, Hojoong Jung, Sung Moon, Kwangjo Lee, Yong-Su Kim
- Abstract summary: We show that RFI-MDI-QKD can be implemented using fewer quantum states than those of its original proposal.
Compared to the conventional RFI-MDI-QKD where both parties should transmit six quantum states, it significantly simplifies the implementation of the QKD protocol.
- Score: 1.1242503819703258
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reference-Frame-Independent Quantum Key Distribution (RFI-QKD) provides a
practical way to generate secret keys between two remote parties without
sharing common reference frames. On the other hand,
Measurement-Device-Independent QKD (MDI-QKD) offers high level of security as
it immunes against all the quantum hacking attempts to the measurement devices.
The combination of these two QKD protocols, i.e., RFI-MDI-QKD, is one of the
most fascinating QKD protocols since it holds both advantages of practicality
and security. For further practicality of RFI-MDI-QKD, it is beneficial to
reduce the implementation complexity. Here, we have shown that RFI-MDI-QKD can
be implemented using fewer quantum states than those of its original proposal.
We found that, in principle, the number of quantum states for one of the
parties can be reduced from six to three without compromising security.
Comparing to the conventional RFI-MDI-QKD where both parties should transmit
six quantum states, it significantly simplifies the implementation of the QKD
protocol. We also verify the feasibility of the scheme with the
proof-of-principle experiment.
Related papers
- Practical hybrid PQC-QKD protocols with enhanced security and performance [44.8840598334124]
We develop hybrid protocols by which QKD and PQC inter-operate within a joint quantum-classical network.
In particular, we consider different hybrid designs that may offer enhanced speed and/or security over the individual performance of either approach.
arXiv Detail & Related papers (2024-11-02T00:02:01Z) - Quantum-Secured Data Centre Interconnect in a field environment [38.4938584033229]
Quantum key distribution (QKD) is an established quantum technology at a high readiness level.
In this article, we present the successful implementation of a QKD field trial within a commercial data centre environment.
The achieved average secret key rate of 2.392 kbps and an average quantum bit error rate of less than 2% demonstrate the commercial feasibility of QKD in real-world scenarios.
arXiv Detail & Related papers (2024-10-14T08:05:25Z) - The Road to Near-Capacity CV-QKD Reconciliation: An FEC-Agnostic Design [53.67135680812675]
A new codeword-based QKD reconciliation scheme is proposed.
Both the authenticated classical channel (ClC) and the quantum channel (QuC) are protected by separate forward error correction (FEC) coding schemes.
The proposed system makes QKD reconciliation compatible with a wide range of FEC schemes.
arXiv Detail & Related papers (2024-03-24T14:47:08Z) - One-sided DI-QKD secure against coherent attacks over long distances [0.0]
Device-Independent (DI) QKD protocols overcome this issue by making minimal device assumptions.
We show that a one-sided DI QKD scheme with two measurements per party is secure against coherent attacks up to detection efficiencies greater than 50.1% specifically on the untrusted side.
We also show that, by placing the source of states close to the untrusted side, our protocol is secure over distances comparable to standard QKD protocols.
arXiv Detail & Related papers (2024-03-18T15:01:17Z) - QKD Based on Time-Entangled Photons and its Key-Rate Promise [24.07745562101555]
Time-entanglement-based QKD promises to increase the secret key rate and distribution compared to other QKD implementations.
We overview state-of-the-art from the information and coding theory perspective.
arXiv Detail & Related papers (2023-03-03T14:40:40Z) - Single-photon-memory measurement-device-independent quantum secure
direct communication [63.75763893884079]
Quantum secure direct communication (QSDC) uses the quantum channel to transmit information reliably and securely.
In order to eliminate the security loopholes resulting from practical detectors, the measurement-device-independent (MDI) QSDC protocol has been proposed.
We propose a single-photon-memory MDI QSDC protocol (SPMQC) for dispensing with high-performance quantum memory.
arXiv Detail & Related papers (2022-12-12T02:23:57Z) - Advances in device-independent quantum key distribution [8.155166479336625]
Device-independent quantum key distribution (DI-QKD) provides the gold standard for secure key exchange.
Recent theoretical and experimental efforts have led to the first proof-of-principle DI-QKD implementations.
arXiv Detail & Related papers (2022-08-26T18:55:40Z) - High-dimensional coherent one-way quantum key distribution [0.0]
High-dimensional quantum key distribution (QKD) offers secure communication, with secure key rates that surpass those achievable by QKD protocols.
Existing high-dimensional QKD protocols require additional experimental resources, such as multiport interferometers and multiple detectors.
We present and analyze a novel protocol for arbitrary-dimensional QKD, that requires only the hardware of a standard two-dimensional system.
arXiv Detail & Related papers (2021-05-11T01:06:36Z) - Reference-frame-independent measurement-device-independent quantum key
distribution with imperfect sources [2.4331238547907876]
We propose a robust RFI-MDI-QKD protocol which is robust against state preparation flaws.
Our scheme can be realized with only four flawed states, which improves the practical security of RFI-MDI-QKD.
arXiv Detail & Related papers (2021-02-21T16:28:50Z) - Upper bounds on device-independent quantum key distribution [4.7840623105240585]
Device-independent quantum key distribution (DIQKD) is a version of QKD with a stronger notion of security.
We study the rate at which DIQKD can be carried out for a given bipartite quantum state distributed between the sender and receiver.
arXiv Detail & Related papers (2020-05-27T17:41:38Z) - Backflash Light as a Security Vulnerability in Quantum Key Distribution
Systems [77.34726150561087]
We review the security vulnerabilities of quantum key distribution (QKD) systems.
We mainly focus on a particular effect known as backflash light, which can be a source of eavesdropping attacks.
arXiv Detail & Related papers (2020-03-23T18:23:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.