論文の概要: GenSC-6G: A Prototype Testbed for Integrated Generative AI, Quantum, and Semantic Communication
- arxiv url: http://arxiv.org/abs/2501.09918v1
- Date: Fri, 17 Jan 2025 02:20:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-20 14:00:14.809811
- Title: GenSC-6G: A Prototype Testbed for Integrated Generative AI, Quantum, and Semantic Communication
- Title(参考訳): GenSC-6G: 汎用AI、量子、セマンティックコミュニケーションのためのプロトタイプテストベッド
- Authors: Brian E. Arfeto, Shehbaz Tariq, Uman Khalid, Trung Q. Duong, Hyundong Shin,
- Abstract要約: GenSC-6Gデータセットは、セマンティックデコーディング、分類、ローカライゼーションタスクに最適化されたノイズ強化合成データで設計されている。
このプロトタイプはベースラインモデル、通信モジュール、ゴール指向デコーダ間のシームレスな修正をサポートしている。
- 参考スコア(独自算出の注目度): 15.241605187543616
- License:
- Abstract: We introduce a prototyping testbed, GenSC-6G, developed to generate a comprehensive dataset that supports the integration of generative artificial intelligence (AI), quantum computing, and semantic communication for emerging sixth-generation (6G) applications. The GenSC-6G dataset is designed with noise-augmented synthetic data optimized for semantic decoding, classification, and localization tasks, significantly enhancing flexibility for diverse AI-driven communication applications. This adaptable prototype supports seamless modifications across baseline models, communication modules, and goal-oriented decoders. Case studies demonstrate its application in lightweight classification, semantic upsampling, and edge-based language inference under noise conditions. The GenSC-6G dataset serves as a scalable and robust resource for developing goal-oriented communication systems tailored to the growing demands of 6G networks.
- Abstract(参考訳): 我々は、生成人工知能(AI)、量子コンピューティング、新しい第6世代(6G)アプリケーションのためのセマンティックコミュニケーションの統合をサポートする包括的なデータセットを作成するために開発されたプロトタイピングテストベッドGenSC-6Gを紹介する。
GenSC-6Gデータセットは、セマンティックデコーディング、分類、ローカライゼーションタスクに最適化されたノイズ強化合成データで設計されており、多様なAI駆動通信アプリケーションに対する柔軟性を著しく向上している。
この適応可能なプロトタイプは、ベースラインモデル、通信モジュール、ゴール指向デコーダ間のシームレスな修正をサポートする。
ケーススタディは、ノイズ条件下での軽量な分類、セマンティックアップサンプリング、エッジベース言語推論にその応用を実証する。
GenSC-6Gデータセットは、6Gネットワークの需要の増加に合わせて、目標指向の通信システムを開発するためのスケーラブルで堅牢なリソースとして機能する。
関連論文リスト
- Generative AI Enabled Matching for 6G Multiple Access [51.00960374545361]
我々は6G多重アクセスをサポートするGenAI対応マッチング生成フレームワークを提案する。
我々のフレームワークは、与えられた条件と事前定義された報酬に基づいて、より効果的なマッチング戦略を生成することができることを示す。
論文 参考訳(メタデータ) (2024-10-29T13:01:26Z) - Agent-driven Generative Semantic Communication with Cross-Modality and Prediction [57.335922373309074]
本稿では,強化学習に基づくエージェント駆動型ジェネリックセマンティックコミュニケーションフレームワークを提案する。
本研究では, エージェント支援型セマンティックエンコーダを開発し, 適応的セマンティック抽出とサンプリングを行う。
設計モデルの有効性をUA-DETRACデータセットを用いて検証し、全体的なA-GSCフレームワークの性能向上を実証した。
論文 参考訳(メタデータ) (2024-04-10T13:24:27Z) - Integrating Pre-Trained Language Model with Physical Layer Communications [19.20941153929975]
本稿では、物理層(PHY)通信機能と統合された実用的なオンデバイスAI通信フレームワークを提案する。
我々のフレームワークは、チャネルノイズによるエンドツーエンドトレーニングを取り入れ、レジリエンスを高め、ベクトル量子化変分オートエンコーダ(VQ-VAE)を効率よく堅牢な通信に組み込み、事前学習エンコーダ・デコーダ変換を用いて一般化能力を向上させる。
論文 参考訳(メタデータ) (2024-02-18T17:27:51Z) - At the Dawn of Generative AI Era: A Tutorial-cum-Survey on New Frontiers
in 6G Wireless Intelligence [11.847999494242387]
ジェネレーティブAI(Generative AI、ジェネレーティブAI)は、入力データの基盤となるデータ分布、パターン、特徴を識別できるジェネレーティブモデル(GM)である。
これにより、GenAIは、実世界のデータが不足し、不完全で、取得にコストがかかり、モデル化や理解が難しい、無線領域において重要な資産となる。
我々は、セマンティック/THz/ニアフィールド通信、ISAC、超大型アンテナアレイ、デジタルツイン、AI生成コンテンツサービス、モバイルエッジコンピューティングとエッジAI、敵対的ML、信頼に値する6Gネットワーク研究の先駆的な領域におけるGMの役割を概説する。
論文 参考訳(メタデータ) (2024-02-02T06:23:25Z) - Foundation Model Based Native AI Framework in 6G with Cloud-Edge-End
Collaboration [56.330705072736166]
基礎モデルに基づく6GネイティブAIフレームワークを提案し、意図認識型PFMのカスタマイズアプローチを提供し、新しいクラウド-エッジコラボレーションパラダイムを概説する。
実例として,無線通信システムにおける最大和率を達成するために,このフレームワークをオーケストレーションに適用する。
論文 参考訳(メタデータ) (2023-10-26T15:19:40Z) - Generative AI-aided Joint Training-free Secure Semantic Communications
via Multi-modal Prompts [89.04751776308656]
本稿では,多モデルプロンプトを用いたGAI支援型SemComシステムを提案する。
セキュリティ上の懸念に応えて、フレンドリーなジャマーによって支援される隠蔽通信の応用を紹介する。
論文 参考訳(メタデータ) (2023-09-05T23:24:56Z) - Enabling the Wireless Metaverse via Semantic Multiverse Communication [82.47169682083806]
無線ネットワーク上のメタバースは、第6世代(6G)無線システムの新たなユースケースである。
メタバースを人間/機械エージェント固有のセマンティック・マルチバース(SM)に分解する新しいセマンティック・コミュニケーション・フレームワークを提案する。
各エージェントに格納されたSMは、セマンティックエンコーダとジェネレータから構成され、生成人工知能(AI)の最近の進歩を活用する。
論文 参考訳(メタデータ) (2022-12-13T21:21:07Z) - In-situ Model Downloading to Realize Versatile Edge AI in 6G Mobile
Networks [61.416494781759326]
In-situモデルダウンロードは、ネットワーク内のAIライブラリからダウンロードすることで、デバイス上のAIモデルを透過的でリアルタイムに置き換えることを目的としている。
提示されたフレームワークの重要なコンポーネントは、ダウンロードされたモデルを深さレベル、パラメータレベル、ビットレベルで動的に圧縮する一連のテクニックである。
我々は,3層(エッジ,ローカル,中央)AIライブラリのキー機能を備えた,インサイトモデルダウンロードのデプロイ用にカスタマイズされた6Gネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-10-07T13:41:15Z) - True-data Testbed for 5G/B5G Intelligent Network [46.09035008165811]
私たちは5G/B5Gインテリジェントネットワーク(TTIN)のための世界初の真のデータテストベッドを構築します
TTINは5G/B5Gオンサイト実験ネットワーク、データ取得とデータウェアハウス、AIエンジンとネットワーク最適化で構成されている。
本稿では,TTINのシステムアーキテクチャとモジュール設計について詳述する。
論文 参考訳(メタデータ) (2020-11-26T06:42:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。