論文の概要: A Survey on Multi-Turn Interaction Capabilities of Large Language Models
- arxiv url: http://arxiv.org/abs/2501.09959v1
- Date: Fri, 17 Jan 2025 05:21:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-20 13:59:59.082734
- Title: A Survey on Multi-Turn Interaction Capabilities of Large Language Models
- Title(参考訳): 大規模言語モデルのマルチターンインタラクション能力に関する調査研究
- Authors: Chen Zhang, Xinyi Dai, Yaxiong Wu, Qu Yang, Yasheng Wang, Ruiming Tang, Yong Liu,
- Abstract要約: 対話システム研究におけるマルチターンインタラクションは、複数の対話システムにまたがるコンテキストを維持するシステムの能力を指す。
大規模言語モデル(LLM)の最近の進歩は、マルチターンインタラクションの範囲を大きく広げている。
- 参考スコア(独自算出の注目度): 47.05742294162551
- License:
- Abstract: Multi-turn interaction in the dialogue system research refers to a system's ability to maintain context across multiple dialogue turns, enabling it to generate coherent and contextually relevant responses. Recent advancements in large language models (LLMs) have significantly expanded the scope of multi-turn interaction, moving beyond chatbots to enable more dynamic agentic interactions with users or environments. In this paper, we provide a focused review of the multi-turn capabilities of LLMs, which are critical for a wide range of downstream applications, including conversational search and recommendation, consultation services, and interactive tutoring. This survey explores four key aspects: (1) the core model capabilities that contribute to effective multi-turn interaction, (2) how multi-turn interaction is evaluated in current practice, (3) the general algorithms used to enhance multi-turn interaction, and (4) potential future directions for research in this field.
- Abstract(参考訳): 対話システム研究におけるマルチターンインタラクション(マルチターンインタラクション)とは、複数の対話システムにまたがるコンテキストを維持でき、一貫性とコンテキストに関連のある応答を生成できるシステムである。
大規模言語モデル(LLM)の最近の進歩は、ユーザや環境とのより動的なエージェント的インタラクションを可能にするために、チャットボットを超えて、マルチターンインタラクションの範囲を大きく広げている。
本稿では,対話型検索・レコメンデーション,コンサルティングサービス,対話型授業など,幅広いダウンストリームアプリケーションにおいて重要なLLMのマルチターン機能について概説する。
本調査では,(1)効果的なマルチターンインタラクションに寄与するコアモデル機能,(2)現時点におけるマルチターンインタラクションの評価方法,(3)マルチターンインタラクションを強化する汎用アルゴリズム,(4)研究の今後の方向性について検討する。
関連論文リスト
- Unveiling the Impact of Multi-Modal Interactions on User Engagement: A Comprehensive Evaluation in AI-driven Conversations [17.409790984399052]
本稿では,画像と音声をテキストと併用したマルチモーダルインタラクションがユーザエンゲージメントに与える影響について検討する。
本研究は,テキストのみの対話に比べて,マルチモーダルインタラクションによるユーザエンゲージメントが著しく向上していることを明らかにする。
その結果,マルチモーダルインタラクションは認知処理を最適化し,より豊かな情報理解を促進することが示唆された。
論文 参考訳(メタデータ) (2024-06-21T09:26:55Z) - Improving Multi-Agent Debate with Sparse Communication Topology [9.041025703879905]
マルチエージェントの議論は、推論や事実性タスクのための大規模言語モデルの品質向上に有効であることが証明されている。
本稿では,マルチエージェントシステムにおける通信接続の効果について検討する。
GPTモデルとMistralモデルを用いた実験により,疎通信トポロジを利用したマルチエージェントの議論が同等あるいは優れた性能を達成できることが判明した。
論文 参考訳(メタデータ) (2024-06-17T17:33:09Z) - AntEval: Evaluation of Social Interaction Competencies in LLM-Driven
Agents [65.16893197330589]
大規模言語モデル(LLM)は、幅広いシナリオで人間の振る舞いを再現する能力を示した。
しかし、複雑なマルチ文字のソーシャルインタラクションを扱う能力については、まだ完全には研究されていない。
本稿では,新しいインタラクションフレームワークと評価手法を含むマルチエージェントインタラクション評価フレームワーク(AntEval)を紹介する。
論文 参考訳(メタデータ) (2024-01-12T11:18:00Z) - Self-Explanation Prompting Improves Dialogue Understanding in Large
Language Models [52.24756457516834]
大規模言語モデル(LLM)の理解能力を高めるための新たな「自己説明(Self-Explanation)」を提案する。
このタスクに依存しないアプローチでは、タスク実行前の各対話発話を分析し、様々な対話中心のタスクのパフォーマンスを向上させる必要がある。
6つのベンチマークデータセットによる実験結果から,本手法は他のゼロショットプロンプトよりも一貫して優れており,数ショットプロンプトの有効性を超えていることが明らかとなった。
論文 参考訳(メタデータ) (2023-09-22T15:41:34Z) - Dialogue Agents 101: A Beginner's Guide to Critical Ingredients for Designing Effective Conversational Systems [29.394466123216258]
本研究は,対話エージェントの主要な特徴,対応するオープンドメインデータセット,およびこれらのデータセットをベンチマークする手法について概説する。
我々は,既存のデータセットの会話から構築された統一dIalogue dataseTであるUNITを提案する。
論文 参考訳(メタデータ) (2023-07-14T10:05:47Z) - Interactive Natural Language Processing [67.87925315773924]
対話型自然言語処理(iNLP)は,NLP分野における新しいパラダイムとして登場した。
本稿では,iNLPの概念の統一的定義と枠組みを提案することから,iNLPに関する包括的調査を行う。
論文 参考訳(メタデータ) (2023-05-22T17:18:29Z) - A Survey on Proactive Dialogue Systems: Problems, Methods, and Prospects [100.75759050696355]
本稿では,対話エージェントの多種多様な対話における能動性に関する顕著な問題と先進的な設計について概説する。
我々は、現実世界のアプリケーションのニーズを満たすが、将来もっと研究に焦点を当てる必要がある課題について議論する。
論文 参考訳(メタデータ) (2023-05-04T11:38:49Z) - Masking Orchestration: Multi-task Pretraining for Multi-role Dialogue
Representation Learning [50.5572111079898]
マルチロール対話理解は、質問応答、行動分類、対話要約など、幅広い多様なタスクを含む。
対話コーパスは豊富に利用可能であるが、特定の学習タスクのためのラベル付きデータは非常に不足しており、高価である。
本研究では,教師なし事前学習タスクを用いた対話文脈表現学習について検討する。
論文 参考訳(メタデータ) (2020-02-27T04:36:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。