論文の概要: Enhancing UAV Path Planning Efficiency Through Accelerated Learning
- arxiv url: http://arxiv.org/abs/2501.10141v1
- Date: Fri, 17 Jan 2025 12:05:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-20 14:00:34.213486
- Title: Enhancing UAV Path Planning Efficiency Through Accelerated Learning
- Title(参考訳): 加速学習によるUAV経路計画効率の向上
- Authors: Joseanne Viana, Boris Galkin, Lester Ho, Holger Claussen,
- Abstract要約: 本研究では,UAV無線通信中継の経路計画のための学習アルゴリズムの開発を目的とする。
ストレージ要件を削減し、Deep Reinforcement Learning(DRL)の収束を加速することができる。
- 参考スコア(独自算出の注目度): 3.216130900831975
- License:
- Abstract: Unmanned Aerial Vehicles (UAVs) are increasingly essential in various fields such as surveillance, reconnaissance, and telecommunications. This study aims to develop a learning algorithm for the path planning of UAV wireless communication relays, which can reduce storage requirements and accelerate Deep Reinforcement Learning (DRL) convergence. Assuming the system possesses terrain maps of the area and can estimate user locations using localization algorithms or direct GPS reporting, it can input these parameters into the learning algorithms to achieve optimized path planning performance. However, higher resolution terrain maps are necessary to extract topological information such as terrain height, object distances, and signal blockages. This requirement increases memory and storage demands on UAVs while also lengthening convergence times in DRL algorithms. Similarly, defining the telecommunication coverage map in UAV wireless communication relays using these terrain maps and user position estimations demands higher memory and storage utilization for the learning path planning algorithms. Our approach reduces path planning training time by applying a dimensionality reduction technique based on Principal Component Analysis (PCA), sample combination, Prioritized Experience Replay (PER), and the combination of Mean Squared Error (MSE) and Mean Absolute Error (MAE) loss calculations in the coverage map estimates, thereby enhancing a Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm. The proposed solution reduces the convergence episodes needed for basic training by approximately four times compared to the traditional TD3.
- Abstract(参考訳): 無人航空機(UAV)は、監視、偵察、通信など様々な分野でますます重要になっている。
本研究では,UAV無線通信中継の経路計画のための学習アルゴリズムを開発することを目的とする。
システムが地域の地形図を持っていて、ローカライズアルゴリズムやGPSによる直接報告を用いてユーザ位置を推定できると仮定すると、これらのパラメータを学習アルゴリズムに入力して、最適化された経路計画性能を実現することができる。
しかし,高分解能地形図は地形の高さ,物体距離,信号遮断などの地形情報を抽出するために必要である。
この要求は、UAVのメモリとストレージの要求を増大させ、DRLアルゴリズムの収束時間を延長させる。
同様に、これらの地形図とユーザ位置推定を用いたUAV無線通信中継における通信網網網マップの定義には、学習経路計画アルゴリズムのメモリ・ストレージ利用が要求される。
提案手法は,主成分分析(PCA),サンプル組み合わせ,優先経験再生(PER),平均二乗誤差(MSE)と平均絶対誤差(MAE)の併用による経路計画訓練時間を短縮し,TD3アルゴリズムを改良することにより,経路計画訓練時間を短縮する。
提案手法は,基礎訓練に必要な収束エピソードを従来のTD3に比べて約4倍削減する。
関連論文リスト
- SCoTT: Wireless-Aware Path Planning with Vision Language Models and Strategic Chains-of-Thought [78.53885607559958]
複雑な無線環境における経路計画を実現するために,視覚言語モデル(VLM)を用いた新しい手法を提案する。
この目的のために、実世界の無線レイトレーシングデータを用いたデジタルツインからの洞察を探索する。
その結果, SCoTT はDP-WA* と比較して非常に近い平均経路ゲインを実現し, 同時に一貫した経路長が得られることがわかった。
論文 参考訳(メタデータ) (2024-11-27T10:45:49Z) - Adaptive Path Planning for UAVs for Multi-Resolution Semantic
Segmentation [28.104584236205405]
重要な課題は、大規模な環境で取得したデータの価値を最大化するミッションを計画することである。
これは例えば、農地のモニタリングに関係している。
本稿では,UAV経路に適応して高精細なセマンティックセマンティックセマンティクスを得るオンライン計画アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-03-03T11:03:28Z) - Deep Learning Aided Packet Routing in Aeronautical Ad-Hoc Networks
Relying on Real Flight Data: From Single-Objective to Near-Pareto
Multi-Objective Optimization [79.96177511319713]
航空アドホックネットワーク(AANET)のルーティングを支援するために、ディープラーニング(DL)を起動する。
フォワードノードによって観測された局所的な地理的情報を最適な次のホップを決定するために必要な情報にマッピングするために、ディープニューラルネットワーク(DNN)が考案される。
DL支援ルーティングアルゴリズムを多目的シナリオに拡張し,遅延を最小化し,経路容量を最大化し,経路寿命を最大化する。
論文 参考訳(メタデータ) (2021-10-28T14:18:22Z) - Adaptive Path Planning for UAV-based Multi-Resolution Semantic
Segmentation [26.729010176211016]
本稿では,UAV経路に適応して高精細なセマンティックセマンティックセマンティクスを得るオンライン計画アルゴリズムを提案する。
私たちのアプローチの重要な特徴は、ディープラーニングベースのアーキテクチャのための新しい精度モデルです。
実地フィールドデータを用いた精密農業における作物・雑草分断の適用性について,本研究のアプローチを評価した。
論文 参考訳(メタデータ) (2021-08-04T07:30:04Z) - Trajectory Design for UAV-Based Internet-of-Things Data Collection: A
Deep Reinforcement Learning Approach [93.67588414950656]
本稿では,無人航空機(UAV)による3D環境におけるIoT(Internet-of-Things)システムについて検討する。
本稿では,TD3-TDCTMアルゴリズムの完成時間最小化のためのトラジェクトリ設計を提案する。
シミュレーションの結果,従来の3つの非学習ベースライン法よりもTD3-TDCTMアルゴリズムの方が優れていることが示された。
論文 参考訳(メタデータ) (2021-07-23T03:33:29Z) - Path Design and Resource Management for NOMA enhanced Indoor Intelligent
Robots [58.980293789967575]
通信可能な屋内知的ロボット(IR)サービスフレームワークを提案する。
室内レイアウトとチャネル状態を決定論的に記述できるレゴモデリング手法が提案されている。
調査対象の無線マップは、強化学習エージェントを訓練するための仮想環境として呼び出される。
論文 参考訳(メタデータ) (2020-11-23T21:45:01Z) - Multi-Agent Reinforcement Learning in NOMA-aided UAV Networks for
Cellular Offloading [59.32570888309133]
複数の無人航空機(UAV)によるセルローディングのための新しい枠組みの提案
非直交多重アクセス(NOMA)技術は、無線ネットワークのスペクトル効率をさらに向上するために、各UAVに採用されている。
相互深いQ-network (MDQN) アルゴリズムは,UAVの最適3次元軌道と電力配分を共同で決定するために提案される。
論文 参考訳(メタデータ) (2020-10-18T20:22:05Z) - UAV Path Planning using Global and Local Map Information with Deep
Reinforcement Learning [16.720630804675213]
本研究は, 深部強化学習(DRL)に基づく自律型UAV経路計画法を提案する。
我々は、UAVの目標は、データ収集(DH)への関心領域を調査することであり、UAVは分散IoT(Internet of Things)センサーデバイスからデータを収集することである。
環境の構造化マップ情報を活用することで、異なるミッションシナリオで同一のアーキテクチャを持つ二重深度Q-networks(DDQN)を訓練する。
論文 参考訳(メタデータ) (2020-10-14T09:59:10Z) - UAV Path Planning for Wireless Data Harvesting: A Deep Reinforcement
Learning Approach [18.266087952180733]
本稿では,IoT(Internet of Things)デバイスからのUAV対応データ収集に対するエンドツーエンド強化学習手法を提案する。
自律ドローンは、限られた飛行時間と障害物回避を受ける分散センサーノードからデータを収集する。
提案するネットワークアーキテクチャにより,エージェントが様々なシナリオパラメータの移動決定を行うことができることを示す。
論文 参考訳(メタデータ) (2020-07-01T15:14:16Z) - Data Freshness and Energy-Efficient UAV Navigation Optimization: A Deep
Reinforcement Learning Approach [88.45509934702913]
我々は、移動基地局(BS)が配備される複数の無人航空機(UAV)のナビゲーションポリシーを設計する。
我々は、地上BSにおけるデータの鮮度を確保するために、エネルギーや情報年齢(AoI)の制約などの異なる文脈情報を組み込んだ。
提案したトレーニングモデルを適用することで、UAV-BSに対する効果的なリアルタイム軌道ポリシーは、時間とともに観測可能なネットワーク状態をキャプチャする。
論文 参考訳(メタデータ) (2020-02-21T07:29:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。