論文の概要: Adaptive Path Planning for UAV-based Multi-Resolution Semantic
Segmentation
- arxiv url: http://arxiv.org/abs/2108.01884v1
- Date: Wed, 4 Aug 2021 07:30:04 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-05 20:12:18.799722
- Title: Adaptive Path Planning for UAV-based Multi-Resolution Semantic
Segmentation
- Title(参考訳): uavを用いたマルチレゾリューション意味セグメンテーションのための適応経路計画
- Authors: Felix Stache and Jonas Westheider and Federico Magistri and Marija
Popovi\'c and Cyrill Stachniss
- Abstract要約: 本稿では,UAV経路に適応して高精細なセマンティックセマンティックセマンティクスを得るオンライン計画アルゴリズムを提案する。
私たちのアプローチの重要な特徴は、ディープラーニングベースのアーキテクチャのための新しい精度モデルです。
実地フィールドデータを用いた精密農業における作物・雑草分断の適用性について,本研究のアプローチを評価した。
- 参考スコア(独自算出の注目度): 26.729010176211016
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we address the problem of adaptive path planning for accurate
semantic segmentation of terrain using unmanned aerial vehicles (UAVs). The
usage of UAVs for terrain monitoring and remote sensing is rapidly gaining
momentum due to their high mobility, low cost, and flexible deployment.
However, a key challenge is planning missions to maximize the value of acquired
data in large environments given flight time limitations. To address this, we
propose an online planning algorithm which adapts the UAV paths to obtain
high-resolution semantic segmentations necessary in areas on the terrain with
fine details as they are detected in incoming images. This enables us to
perform close inspections at low altitudes only where required, without wasting
energy on exhaustive mapping at maximum resolution. A key feature of our
approach is a new accuracy model for deep learning-based architectures that
captures the relationship between UAV altitude and semantic segmentation
accuracy. We evaluate our approach on the application of crop/weed segmentation
in precision agriculture using real-world field data.
- Abstract(参考訳): 本稿では,無人航空機(UAV)を用いた地形の正確なセマンティックセグメンテーションのための適応経路計画の問題に対処する。
地形モニタリングやリモートセンシングにおけるUAVの利用は、高モビリティ、低コスト、柔軟な展開のために急速に勢いを増している。
しかし、飛行時間の制限により、大きな環境で取得したデータの価値を最大化するミッションを計画することが重要な課題である。
そこで本研究では,uav経路を応用して地形上の領域に必要となる高分解能な意味セグメンテーションを得るオンライン計画手法を提案する。
これにより,最大分解能で網羅的なマッピングにエネルギーを浪費することなく,低高度で綿密な検査を行うことができる。
我々のアプローチの重要な特徴は、UAV高度とセマンティックセグメンテーションの精度の関係をキャプチャするディープラーニングベースのアーキテクチャの新しい精度モデルである。
本研究は,実世界フィールドデータを用いた精密農業における作物・雑草セグメンテーションの適用について評価する。
関連論文リスト
- Automatic UAV-based Airport Pavement Inspection Using Mixed Real and
Virtual Scenarios [3.0874677990361246]
本稿では,UAVが捉えた画像を用いて,舗装の苦悩を自動的に識別する視覚的アプローチを提案する。
提案手法は,画像の欠陥を分割する深層学習(DL)に基づいている。
合成および実訓練画像からなる混合データセットを使用することで、実アプリケーションシナリオでトレーニングモデルをテストする場合、より良い結果が得られることを示す。
論文 参考訳(メタデータ) (2024-01-11T16:30:07Z) - An Informative Path Planning Framework for Active Learning in UAV-based
Semantic Mapping [27.460481202195012]
無人航空機(UAV)は、航空地図や一般的な監視作業に頻繁に使用される。
近年のディープラーニングの進歩により、画像の自動セマンティックセグメンテーションが実現され、大規模な複雑な環境の解釈が容易になった。
モデル再学習のための情報的訓練画像を自律的に取得するための,UAVのための新しい汎用的計画フレームワークを提案する。
論文 参考訳(メタデータ) (2023-02-07T09:41:21Z) - Adaptive Path Planning for UAVs for Multi-Resolution Semantic
Segmentation [28.104584236205405]
重要な課題は、大規模な環境で取得したデータの価値を最大化するミッションを計画することである。
これは例えば、農地のモニタリングに関係している。
本稿では,UAV経路に適応して高精細なセマンティックセマンティックセマンティクスを得るオンライン計画アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-03-03T11:03:28Z) - Deep Learning Aided Packet Routing in Aeronautical Ad-Hoc Networks
Relying on Real Flight Data: From Single-Objective to Near-Pareto
Multi-Objective Optimization [79.96177511319713]
航空アドホックネットワーク(AANET)のルーティングを支援するために、ディープラーニング(DL)を起動する。
フォワードノードによって観測された局所的な地理的情報を最適な次のホップを決定するために必要な情報にマッピングするために、ディープニューラルネットワーク(DNN)が考案される。
DL支援ルーティングアルゴリズムを多目的シナリオに拡張し,遅延を最小化し,経路容量を最大化し,経路寿命を最大化する。
論文 参考訳(メタデータ) (2021-10-28T14:18:22Z) - Large-scale Autonomous Flight with Real-time Semantic SLAM under Dense
Forest Canopy [48.51396198176273]
本研究では,大規模自律飛行とリアルタイムセマンティックマッピングを,挑戦的なアンダーキャノピー環境下で実現可能な統合システムを提案する。
我々は、スキャン全体で関連付けられ、木のトランクモデルと同様にロボットのポーズを制約するために使用されるLiDARデータから、木の幹と地面の平面を検出し、モデル化する。
ドリフト補償機構は、プランナー最適性とコントローラ安定性を維持しつつ、セマンティックSLAM出力を用いたドリフトをリアルタイムで最小化するように設計されている。
論文 参考訳(メタデータ) (2021-09-14T07:24:53Z) - Stagewise Unsupervised Domain Adaptation with Adversarial Self-Training
for Road Segmentation of Remote Sensing Images [93.50240389540252]
リモートセンシング画像からの道路セグメンテーションは、幅広い応用可能性を持つ課題である。
本稿では,この領域における領域シフト(DS)問題に対処するため,RoadDAと呼ばれる新たな段階的ドメイン適応モデルを提案する。
2つのベンチマーク実験の結果、RoadDAはドメインギャップを効率的に減らし、最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2021-08-28T09:29:14Z) - Trajectory Design for UAV-Based Internet-of-Things Data Collection: A
Deep Reinforcement Learning Approach [93.67588414950656]
本稿では,無人航空機(UAV)による3D環境におけるIoT(Internet-of-Things)システムについて検討する。
本稿では,TD3-TDCTMアルゴリズムの完成時間最小化のためのトラジェクトリ設計を提案する。
シミュレーションの結果,従来の3つの非学習ベースライン法よりもTD3-TDCTMアルゴリズムの方が優れていることが示された。
論文 参考訳(メタデータ) (2021-07-23T03:33:29Z) - UAV Path Planning using Global and Local Map Information with Deep
Reinforcement Learning [16.720630804675213]
本研究は, 深部強化学習(DRL)に基づく自律型UAV経路計画法を提案する。
我々は、UAVの目標は、データ収集(DH)への関心領域を調査することであり、UAVは分散IoT(Internet of Things)センサーデバイスからデータを収集することである。
環境の構造化マップ情報を活用することで、異なるミッションシナリオで同一のアーキテクチャを持つ二重深度Q-networks(DDQN)を訓練する。
論文 参考訳(メタデータ) (2020-10-14T09:59:10Z) - Refined Plane Segmentation for Cuboid-Shaped Objects by Leveraging Edge
Detection [63.942632088208505]
本稿では,セグメント化された平面マスクを画像に検出されたエッジと整列するための後処理アルゴリズムを提案する。
これにより、立方体形状の物体に制限を加えながら、最先端のアプローチの精度を高めることができます。
論文 参考訳(メタデータ) (2020-03-28T18:51:43Z) - Data Freshness and Energy-Efficient UAV Navigation Optimization: A Deep
Reinforcement Learning Approach [88.45509934702913]
我々は、移動基地局(BS)が配備される複数の無人航空機(UAV)のナビゲーションポリシーを設計する。
我々は、地上BSにおけるデータの鮮度を確保するために、エネルギーや情報年齢(AoI)の制約などの異なる文脈情報を組み込んだ。
提案したトレーニングモデルを適用することで、UAV-BSに対する効果的なリアルタイム軌道ポリシーは、時間とともに観測可能なネットワーク状態をキャプチャする。
論文 参考訳(メタデータ) (2020-02-21T07:29:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。