Quantum Advantage in Private Multiple Hypothesis Testing
- URL: http://arxiv.org/abs/2501.10152v2
- Date: Thu, 13 Feb 2025 03:46:30 GMT
- Title: Quantum Advantage in Private Multiple Hypothesis Testing
- Authors: Seung-Hyun Nam, Hyun-Young Park, Joonwoo Bae, Si-Hyeon Lee,
- Abstract summary: For multiple hypothesis testing based on classical data samples, we demonstrate a quantum advantage in the optimal privacy-utility trade-off (PUT)
We propose a certain quantum mechanism which achieves a better PUT than the upper bound.
The proposed quantum mechanism consists of a classical-quantum channel whose outputs are pure states corresponding to a symmetric informationally complete positive operator-valued measure (SIC-POVM)
- Score: 13.799488979862026
- License:
- Abstract: For multiple hypothesis testing based on classical data samples, we demonstrate a quantum advantage in the optimal privacy-utility trade-off (PUT), where the privacy and utility measures are set to (quantum) local differential privacy and the pairwise-minimum Chernoff information, respectively. To show the quantum advantage, we consider some class of hypotheses that we coin smoothed point masses. For such hypotheses, we derive an upper bound of the optimal PUT achieved by classical mechanisms, which is tight for some cases, and propose a certain quantum mechanism which achieves a better PUT than the upper bound. The proposed quantum mechanism consists of a classical-quantum channel whose outputs are pure states corresponding to a symmetric informationally complete positive operator-valued measure (SIC-POVM), and a depolarizing channel.
Related papers
- Optimal Mechanisms for Quantum Local Differential Privacy [1.125100225226559]
QLDP utilizes a parameter $epsilon$ to manage privacy leaks and ensure the privacy of individual quantum states.
The introduction of quantum noise is shown to provide privacy protections similar to classical scenarios.
Quantum depolarizing noise is identified as the optimal unital privatization mechanism within the QLDP framework.
arXiv Detail & Related papers (2024-07-18T13:46:16Z) - Quantum Advantage: A Single Qubit's Experimental Edge in Classical Data Storage [5.669806907215807]
We implement an experiment on a photonic quantum processor establishing efficacy of the elementary quantum system in classical information storage.
Our work paves the way for immediate applications in near-term quantum technologies.
arXiv Detail & Related papers (2024-03-05T05:09:32Z) - Quantum Pufferfish Privacy: A Flexible Privacy Framework for Quantum Systems [19.332726520752846]
We propose a versatile privacy framework for quantum systems, termed quantum pufferfish privacy (QPP)
Inspired by classical pufferfish privacy, our formulation generalizes and addresses limitations of quantum differential privacy.
We show that QPP can be equivalently formulated in terms of the Datta-Leditzky information spectrum divergence.
arXiv Detail & Related papers (2023-06-22T17:21:17Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
We present an approach where the quantum computation is supplemented by a classical result.
Taking advantage of its anticipation also leads to a new type of quantum measurements, which we call anticipative.
In an anticipative quantum measurement the combination of the results from classical and quantum computations happens only in the end.
arXiv Detail & Related papers (2022-09-12T15:47:44Z) - Experimental validation of the Kibble-Zurek Mechanism on a Digital
Quantum Computer [62.997667081978825]
The Kibble-Zurek mechanism captures the essential physics of nonequilibrium quantum phase transitions with symmetry breaking.
We experimentally tested the KZM for the simplest quantum case, a single qubit under the Landau-Zener evolution.
We report on extensive IBM-Q experiments on individual qubits embedded in different circuit environments and topologies.
arXiv Detail & Related papers (2022-08-01T18:00:02Z) - Theory of Quantum Generative Learning Models with Maximum Mean
Discrepancy [67.02951777522547]
We study learnability of quantum circuit Born machines (QCBMs) and quantum generative adversarial networks (QGANs)
We first analyze the generalization ability of QCBMs and identify their superiorities when the quantum devices can directly access the target distribution.
Next, we prove how the generalization error bound of QGANs depends on the employed Ansatz, the number of qudits, and input states.
arXiv Detail & Related papers (2022-05-10T08:05:59Z) - Quantum Local Differential Privacy and Quantum Statistical Query Model [0.7673339435080445]
Quantum statistical queries provide a theoretical framework for investigating the computational power of a learner with limited quantum resources.
In this work, we establish an equivalence between quantum statistical queries and quantum differential privacy in the local model.
We consider the task of quantum multi-party computation under local differential privacy.
arXiv Detail & Related papers (2022-03-07T18:38:02Z) - Interactive Protocols for Classically-Verifiable Quantum Advantage [46.093185827838035]
"Interactions" between a prover and a verifier can bridge the gap between verifiability and implementation.
We demonstrate the first implementation of an interactive quantum advantage protocol, using an ion trap quantum computer.
arXiv Detail & Related papers (2021-12-09T19:00:00Z) - Preparing random states and benchmarking with many-body quantum chaos [48.044162981804526]
We show how to predict and experimentally observe the emergence of random state ensembles naturally under time-independent Hamiltonian dynamics.
The observed random ensembles emerge from projective measurements and are intimately linked to universal correlations built up between subsystems of a larger quantum system.
Our work has implications for understanding randomness in quantum dynamics, and enables applications of this concept in a wider context.
arXiv Detail & Related papers (2021-03-05T08:32:43Z) - Quantum Illumination with a generic Gaussian source [0.7874708385247353]
We find that maximal entanglement is not strictly necessary to achieve quantum advantage over the classical benchmark of a coherent-state transmitter.
While performing this quantum-classical comparison, we also investigate a suitable regime of parameters for potential short-range radar (or scanner) applications.
arXiv Detail & Related papers (2020-05-15T18:37:26Z) - Probing the Universality of Topological Defect Formation in a Quantum
Annealer: Kibble-Zurek Mechanism and Beyond [46.39654665163597]
We report on experimental tests of topological defect formation via the one-dimensional transverse-field Ising model.
We find that the quantum simulator results can indeed be explained by the KZM for open-system quantum dynamics with phase-flip errors.
This implies that the theoretical predictions of the generalized KZM theory, which assumes isolation from the environment, applies beyond its original scope to an open system.
arXiv Detail & Related papers (2020-01-31T02:55:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.