Implementing Finite Impulse Response Filters on Quantum Computers
- URL: http://arxiv.org/abs/2501.10166v1
- Date: Fri, 17 Jan 2025 12:58:06 GMT
- Title: Implementing Finite Impulse Response Filters on Quantum Computers
- Authors: Aishwarya Majumdar, Bojko N. Bakalov, Dror Baron, Yuan Liu,
- Abstract summary: We propose approaches that perform classical discrete-time signal processing using quantum systems.
Our approaches encode the classical discrete-time input signal into quantum states, and design unitaries to realize classical concepts of finite impulse response (FIR) filters.
- Score: 6.93099093499693
- License:
- Abstract: While signal processing is a mature area, its connections with quantum computing have received less attention. In this work, we propose approaches that perform classical discrete-time signal processing using quantum systems. Our approaches encode the classical discrete-time input signal into quantum states, and design unitaries to realize classical concepts of finite impulse response (FIR) filters. We also develop strategies to cascade lower-order filters to realize higher-order filters through designing appropriate unitary operators. Finally, a few directions for processing quantum states on classical systems after converting them to classical signals are suggested for future work.
Related papers
- Quantum information with quantum-like bits [0.0]
We show how arbitrary gates can be implemented by manipulating many-body correlations.
This suggests the possibility of quantum-like information processing on a special class of many-body classical systems.
arXiv Detail & Related papers (2024-08-12T20:40:54Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Detection of quantum signals free of classical noise via quantum
correlation [11.77683787875381]
Conventional noise filtering methods rely on different patterns of signal and noise in frequency or time domains.
We propose a signal-nature-based (not signal-pattern-based) approach which singles out a quantum signal from its classical noise background.
arXiv Detail & Related papers (2023-02-27T05:53:54Z) - Quantum-inspired optimization for wavelength assignment [51.55491037321065]
We propose and develop a quantum-inspired algorithm for solving the wavelength assignment problem.
Our results pave the way to the use of quantum-inspired algorithms for practical problems in telecommunications.
arXiv Detail & Related papers (2022-11-01T07:52:47Z) - Optimal quantum control via genetic algorithms for quantum state
engineering in driven-resonator mediated networks [68.8204255655161]
We employ a machine learning-enabled approach to quantum state engineering based on evolutionary algorithms.
We consider a network of qubits -- encoded in the states of artificial atoms with no direct coupling -- interacting via a common single-mode driven microwave resonator.
We observe high quantum fidelities and resilience to noise, despite the algorithm being trained in the ideal noise-free setting.
arXiv Detail & Related papers (2022-06-29T14:34:00Z) - Identification of topological phases using classically-optimized
variational quantum eigensolver [0.6181093777643575]
Variational quantum eigensolver (VQE) is regarded as a promising candidate of hybrid quantum-classical algorithm for quantum computers.
We propose classically-optimized VQE (co-VQE), where the whole process of the optimization is efficiently conducted on a classical computer.
In co-VQE, we only use quantum computers to measure nonlocal quantities after the parameters are optimized.
arXiv Detail & Related papers (2022-02-07T02:26:58Z) - Quantum Gaussian filter for exploring ground-state properties [0.0]
Filter methods realize a projection from a superposed quantum state onto a target state, which can be efficient if two states have sufficient overlap.
We propose a quantum Gaussian filter (QGF) with the filter operator being a Gaussian function of the system Hamiltonian.
A hybrid quantum-classical algorithm feasible on near-term quantum computers is developed.
arXiv Detail & Related papers (2021-12-11T16:55:13Z) - Quantum Error Mitigation Relying on Permutation Filtering [84.66087478797475]
We propose a general framework termed as permutation filters, which includes the existing permutation-based methods as special cases.
We show that the proposed filter design algorithm always converges to the global optimum, and that the optimal filters can provide substantial improvements over the existing permutation-based methods.
arXiv Detail & Related papers (2021-07-03T16:07:30Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Filter Function Formalism and Software Package to Compute Quantum
Processes of Gate Sequences for Classical Non-Markovian Noise [0.0]
Correlated, non-Markovian noise is present in many solid-state systems employed as hosts for quantum information technologies.
We show it can be applied to describe unital evolution within the quantum operations formalism.
arXiv Detail & Related papers (2021-03-03T13:54:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.