論文の概要: Temporal Causal Reasoning with (Non-Recursive) Structural Equation Models
- arxiv url: http://arxiv.org/abs/2501.10190v1
- Date: Fri, 17 Jan 2025 13:37:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-20 13:59:07.588082
- Title: Temporal Causal Reasoning with (Non-Recursive) Structural Equation Models
- Title(参考訳): 非帰納的構造方程式モデルを用いた時間因果推論
- Authors: Maksim Gladyshev, Natasha Alechina, Mehdi Dastani, Dragan Doder, Brian Logan,
- Abstract要約: 本研究では, 構造方程式モデル (SEM) の新しい解釈法を提案する。
これにより、カウンターファクトの因果推論と既存の時間論理形式を組み合わせられる。
提案手法では,いわゆるテキスト再帰モデルに対する標準的制約は不要であることを示す。
- 参考スコア(独自算出の注目度): 9.112107794815671
- License:
- Abstract: Structural Equation Models (SEM) are the standard approach to representing causal dependencies between variables in causal models. In this paper we propose a new interpretation of SEMs when reasoning about Actual Causality, in which SEMs are viewed as mechanisms transforming the dynamics of exogenous variables into the dynamics of endogenous variables. This allows us to combine counterfactual causal reasoning with existing temporal logic formalisms, and to introduce a temporal logic, CPLTL, for causal reasoning about such structures. We show that the standard restriction to so-called \textit{recursive} models (with no cycles in the dependency graph) is not necessary in our approach, allowing us to reason about mutually dependent processes and feedback loops. Finally, we introduce new notions of model equivalence for temporal causal models, and show that CPLTL has an efficient model-checking procedure.
- Abstract(参考訳): 構造方程式モデル (Structure Equation Models, SEM) は、因果モデルにおける変数間の因果依存性を表現する標準的な手法である。
本稿では,外因性変数の力学を内因性変数の力学に変換するメカニズムとして,実因性を考慮したSEMの新しい解釈を提案する。
これにより、因果推論と既存の時間論理形式を結合し、そのような構造を因果推論するための時間論理 CPLTL を導入することができる。
このアプローチでは,いわゆる‘textit{recursive}モデル(依存性グラフのサイクルを持たない)に対する標準的な制限は不要であり,相互依存的なプロセスやフィードバックループの推論を可能にする。
最後に、時間的因果モデルに対するモデル等価性の新しい概念を導入し、CPLTLが効率的なモデル検査方法を持っていることを示す。
関連論文リスト
- Sequential Representation Learning via Static-Dynamic Conditional Disentanglement [58.19137637859017]
本稿では,ビデオ中の時間非依存要因と時間変化要因を分離することに着目し,逐次的データ内での自己教師付き不整合表現学習について検討する。
本稿では,静的/動的変数間の因果関係を明示的に考慮し,それらの因子間の通常の独立性仮定を破る新しいモデルを提案する。
実験により、提案手法は、シーンのダイナミックスが内容に影響されるシナリオにおいて、従来の複雑な最先端技術よりも優れていることが示された。
論文 参考訳(メタデータ) (2024-08-10T17:04:39Z) - Learning Relational Causal Models with Cycles through Relational
Acyclification [16.10327013845982]
本稿では,関係モデルに特化して設計されたテキスト・アサイクリフィケーションを提案する。
リレーショナルアサイクリゼーションと$sigma$-faithfulnessという仮定の下で、リレーショナル因果探索アルゴリズム RCD はサイクリックモデルに対して健全かつ完全であることを示す。
論文 参考訳(メタデータ) (2022-08-25T17:00:42Z) - Explaining Causal Models with Argumentation: the Case of Bi-variate
Reinforcement [15.947501347927687]
因果モデルから議論フレームワーク(AF)を生成するための概念化を導入する。
この概念化は、AFの意味論の望ましい性質を説明型として再解釈することに基づいている。
我々はこれらの論証的説明の理論的評価を行い、それらが望ましい説明的および論証的特性の範囲を満たすかどうかを検討する。
論文 参考訳(メタデータ) (2022-05-23T19:39:51Z) - A general framework for cyclic and fine-tuned causal models and their
compatibility with space-time [2.0305676256390934]
因果モデリングは、観測された相関の因果的説明を生成するためのツールである。
既存の量子因果関係の枠組みは、微調整されていない非巡回因果構造に焦点を当てる傾向がある。
サイクル因果モデルはフィードバックを含む物理的プロセスのモデル化に使用することができる。
サイクル因果モデルは一般相対性理論のエキゾチック解にも関係があるかもしれない。
論文 参考訳(メタデータ) (2021-09-24T18:00:08Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
因果機構は構造因果モデルによって記述できる。
最先端の人工知能の大きな欠点の1つは、説明責任の欠如である。
論文 参考訳(メタデータ) (2021-09-06T14:52:58Z) - Discovering Latent Causal Variables via Mechanism Sparsity: A New
Principle for Nonlinear ICA [81.4991350761909]
ICA(Independent component analysis)は、この目的を定式化し、実用的な応用のための推定手順を提供する手法の集合を指す。
潜伏変数は、潜伏機構をスパースに正則化すれば、置換まで復元可能であることを示す。
論文 参考訳(メタデータ) (2021-07-21T14:22:14Z) - Systematic Evaluation of Causal Discovery in Visual Model Based
Reinforcement Learning [76.00395335702572]
AIと因果関係の中心的な目標は、抽象表現と因果構造を共同で発見することである。
因果誘導を研究するための既存の環境は、複雑なタスク固有の因果グラフを持つため、この目的には適していない。
本研究の目的は,高次変数の学習表現と因果構造の研究を促進することである。
論文 参考訳(メタデータ) (2021-07-02T05:44:56Z) - Do-calculus enables causal reasoning with latent variable models [2.294014185517203]
潜在変数モデル(LVM)は、トレーニング中に変数の一部が隠蔽される確率モデルである。
因果推論は,確率的モデリングコミュニティで長年確立されてきた幅広いlvmのクラスを拡張できることを示す。
論文 参考訳(メタデータ) (2021-02-12T17:12:53Z) - Disentangling Observed Causal Effects from Latent Confounders using
Method of Moments [67.27068846108047]
我々は、軽度の仮定の下で、識別性と学習可能性に関する保証を提供する。
我々は,線形制約付き結合テンソル分解に基づく効率的なアルゴリズムを開発し,スケーラブルで保証可能な解を得る。
論文 参考訳(メタデータ) (2021-01-17T07:48:45Z) - Structural Causal Models Are (Solvable by) Credal Networks [70.45873402967297]
因果推論は、干潟網の更新のための標準的なアルゴリズムによって得ることができる。
この貢献は, 干潟ネットワークによる構造因果モデルを表現するための体系的なアプローチと見なされるべきである。
実験により, 実規模問題における因果推論には, クレーダルネットワークの近似アルゴリズムがすぐに利用できることがわかった。
論文 参考訳(メタデータ) (2020-08-02T11:19:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。