Adaptive Clustering for Efficient Phenotype Segmentation of UAV Hyperspectral Data
- URL: http://arxiv.org/abs/2501.10199v1
- Date: Fri, 17 Jan 2025 13:48:04 GMT
- Title: Adaptive Clustering for Efficient Phenotype Segmentation of UAV Hyperspectral Data
- Authors: Ciem Cornelissen, Sam Leroux, Pieter Simoens,
- Abstract summary: Unmanned Aerial Vehicles (UAVs) combined with Hyperspectral imaging (HSI) offer potential for environmental and agricultural applications.
This paper introduces an Online Hyperspectral Simple Linear Iterative Clustering algorithm (OHSLIC) framework for real-time tree phenotype segmentation.
- Score: 1.6135226672466307
- License:
- Abstract: Unmanned Aerial Vehicles (UAVs) combined with Hyperspectral imaging (HSI) offer potential for environmental and agricultural applications by capturing detailed spectral information that enables the prediction of invisible features like biochemical leaf properties. However, the data-intensive nature of HSI poses challenges for remote devices, which have limited computational resources and storage. This paper introduces an Online Hyperspectral Simple Linear Iterative Clustering algorithm (OHSLIC) framework for real-time tree phenotype segmentation. OHSLIC reduces inherent noise and computational demands through adaptive incremental clustering and a lightweight neural network, which phenotypes trees using leaf contents such as chlorophyll, carotenoids, and anthocyanins. A hyperspectral dataset is created using a custom simulator that incorporates realistic leaf parameters, and light interactions. Results demonstrate that OHSLIC achieves superior regression accuracy and segmentation performance compared to pixel- or window-based methods while significantly reducing inference time. The method`s adaptive clustering enables dynamic trade-offs between computational efficiency and accuracy, paving the way for scalable edge-device deployment in HSI applications.
Related papers
- Hybrid State-Space and GRU-based Graph Tokenization Mamba for Hyperspectral Image Classification [14.250184447492208]
Hyperspectral image (HSI) classification plays a pivotal role in domains such as environmental monitoring, agriculture, and urban planning.
Traditional methods, including machine learning and convolutional neural networks (CNNs), often struggle to effectively capture these intricate spectral-spatial features.
This work proposes GraphMamba, a hybrid model that combines spectral-spatial token generation, graph-based token prioritization, and cross-attention mechanisms.
arXiv Detail & Related papers (2025-02-10T13:02:19Z) - HSLiNets: Hyperspectral Image and LiDAR Data Fusion Using Efficient Dual Non-Linear Feature Learning Networks [7.06787067270941]
The integration of hyperspectral imaging (HSI) and LiDAR data within new linear feature spaces offers a promising solution to the challenges posed by the high-dimensionality and redundancy inherent in HSIs.
This study introduces a dual linear fused space framework that capitalizes on bidirectional reversed convolutional neural network (CNN) pathways, coupled with a specialized spatial analysis block.
The proposed method not only enhances data processing and classification accuracy, but also mitigates the computational burden typically associated with advanced models such as Transformers.
arXiv Detail & Related papers (2024-11-30T01:08:08Z) - Hyperspectral Images Efficient Spatial and Spectral non-Linear Model with Bidirectional Feature Learning [7.06787067270941]
We propose a novel framework that significantly reduces data volume while enhancing classification accuracy.
Our model employs a bidirectional reversed convolutional neural network (CNN) to efficiently extract spectral features, complemented by a specialized block for spatial feature analysis.
arXiv Detail & Related papers (2024-11-29T23:32:26Z) - Hybrid Convolutional and Attention Network for Hyperspectral Image Denoising [54.110544509099526]
Hyperspectral image (HSI) denoising is critical for the effective analysis and interpretation of hyperspectral data.
We propose a hybrid convolution and attention network (HCANet) to enhance HSI denoising.
Experimental results on mainstream HSI datasets demonstrate the rationality and effectiveness of the proposed HCANet.
arXiv Detail & Related papers (2024-03-15T07:18:43Z) - Low-Rank Representations Meets Deep Unfolding: A Generalized and
Interpretable Network for Hyperspectral Anomaly Detection [41.50904949744355]
Current hyperspectral anomaly detection (HAD) benchmark datasets suffer from low resolution, simple background, and small size of the detection data.
These factors also limit the performance of the well-known low-rank representation (LRR) models in terms of robustness.
We build a new set of HAD benchmark datasets for improving the robustness of the HAD algorithm in complex scenarios, AIR-HAD for short.
arXiv Detail & Related papers (2024-02-23T14:15:58Z) - ESSAformer: Efficient Transformer for Hyperspectral Image
Super-resolution [76.7408734079706]
Single hyperspectral image super-resolution (single-HSI-SR) aims to restore a high-resolution hyperspectral image from a low-resolution observation.
We propose ESSAformer, an ESSA attention-embedded Transformer network for single-HSI-SR with an iterative refining structure.
arXiv Detail & Related papers (2023-07-26T07:45:14Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
Recent advances in computer vision take advantage of adversarial data augmentation to ameliorate the generalization ability of classification models.
Here, we present an effective and efficient alternative that advocates adversarial augmentation on intermediate feature embeddings.
We validate the proposed approach across diverse visual recognition tasks with representative backbone networks.
arXiv Detail & Related papers (2021-03-22T20:36:34Z) - Neural BRDF Representation and Importance Sampling [79.84316447473873]
We present a compact neural network-based representation of reflectance BRDF data.
We encode BRDFs as lightweight networks, and propose a training scheme with adaptive angular sampling.
We evaluate encoding results on isotropic and anisotropic BRDFs from multiple real-world datasets.
arXiv Detail & Related papers (2021-02-11T12:00:24Z) - Statistical control for spatio-temporal MEG/EEG source imaging with
desparsified multi-task Lasso [102.84915019938413]
Non-invasive techniques like magnetoencephalography (MEG) or electroencephalography (EEG) offer promise of non-invasive techniques.
The problem of source localization, or source imaging, poses however a high-dimensional statistical inference challenge.
We propose an ensemble of desparsified multi-task Lasso (ecd-MTLasso) to deal with this problem.
arXiv Detail & Related papers (2020-09-29T21:17:16Z) - A Trainable Optimal Transport Embedding for Feature Aggregation and its
Relationship to Attention [96.77554122595578]
We introduce a parametrized representation of fixed size, which embeds and then aggregates elements from a given input set according to the optimal transport plan between the set and a trainable reference.
Our approach scales to large datasets and allows end-to-end training of the reference, while also providing a simple unsupervised learning mechanism with small computational cost.
arXiv Detail & Related papers (2020-06-22T08:35:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.