Hybrid State-Space and GRU-based Graph Tokenization Mamba for Hyperspectral Image Classification
- URL: http://arxiv.org/abs/2502.06427v1
- Date: Mon, 10 Feb 2025 13:02:19 GMT
- Title: Hybrid State-Space and GRU-based Graph Tokenization Mamba for Hyperspectral Image Classification
- Authors: Muhammad Ahmad, Muhammad Hassaan Farooq Butt, Muhammad Usama, Manuel Mazzara, Salvatore Distefano, Adil Mehmood Khan, Danfeng Hong,
- Abstract summary: Hyperspectral image (HSI) classification plays a pivotal role in domains such as environmental monitoring, agriculture, and urban planning.
Traditional methods, including machine learning and convolutional neural networks (CNNs), often struggle to effectively capture these intricate spectral-spatial features.
This work proposes GraphMamba, a hybrid model that combines spectral-spatial token generation, graph-based token prioritization, and cross-attention mechanisms.
- Score: 14.250184447492208
- License:
- Abstract: Hyperspectral image (HSI) classification plays a pivotal role in domains such as environmental monitoring, agriculture, and urban planning. However, it faces significant challenges due to the high-dimensional nature of the data and the complex spectral-spatial relationships inherent in HSI. Traditional methods, including conventional machine learning and convolutional neural networks (CNNs), often struggle to effectively capture these intricate spectral-spatial features and global contextual information. Transformer-based models, while powerful in capturing long-range dependencies, often demand substantial computational resources, posing challenges in scenarios where labeled datasets are limited, as is commonly seen in HSI applications. To overcome these challenges, this work proposes GraphMamba, a hybrid model that combines spectral-spatial token generation, graph-based token prioritization, and cross-attention mechanisms. The model introduces a novel hybridization of state-space modeling and Gated Recurrent Units (GRU), capturing both linear and nonlinear spatial-spectral dynamics. GraphMamba enhances the ability to model complex spatial-spectral relationships while maintaining scalability and computational efficiency across diverse HSI datasets. Through comprehensive experiments, we demonstrate that GraphMamba outperforms existing state-of-the-art models, offering a scalable and robust solution for complex HSI classification tasks.
Related papers
- A Comparative Study on Dynamic Graph Embedding based on Mamba and Transformers [0.29687381456164]
This study presents a comparative analysis of dynamic graph embedding approaches using transformers and the recently proposed Mamba architecture.
We introduce three novel models: TransformerG2G augment with graph convolutional networks, DG-Mamba, and GDG-Mamba with graph isomorphism network edge convolutions.
Our experiments on multiple benchmark datasets demonstrate that Mamba-based models achieve comparable or superior performance to transformer-based approaches in link prediction tasks.
arXiv Detail & Related papers (2024-12-15T19:56:56Z) - HRVMamba: High-Resolution Visual State Space Model for Dense Prediction [60.80423207808076]
State Space Models (SSMs) with efficient hardware-aware designs have demonstrated significant potential in computer vision tasks.
These models have been constrained by three key challenges: insufficient inductive bias, long-range forgetting, and low-resolution output representation.
We introduce the Dynamic Visual State Space (DVSS) block, which employs deformable convolution to mitigate the long-range forgetting problem.
We also introduce High-Resolution Visual State Space Model (HRVMamba) based on the DVSS block, which preserves high-resolution representations throughout the entire process.
arXiv Detail & Related papers (2024-10-04T06:19:29Z) - GraphMamba: An Efficient Graph Structure Learning Vision Mamba for Hyperspectral Image Classification [19.740333867168108]
GraphMamba is an efficient graph structure learning vision Mamba classification framework to achieve deep spatial-spectral information mining.
The core components of GraphMamba include the HyperMamba module for improving computational efficiency and the SpectralGCN module for adaptive spatial context awareness.
arXiv Detail & Related papers (2024-07-11T07:56:08Z) - HyperSIGMA: Hyperspectral Intelligence Comprehension Foundation Model [88.13261547704444]
Hyper SIGMA is a vision transformer-based foundation model for HSI interpretation.
It integrates spatial and spectral features using a specially designed spectral enhancement module.
It shows significant advantages in scalability, robustness, cross-modal transferring capability, and real-world applicability.
arXiv Detail & Related papers (2024-06-17T13:22:58Z) - HSIMamba: Hyperpsectral Imaging Efficient Feature Learning with Bidirectional State Space for Classification [16.742768644585684]
HSIMamba is a novel framework that uses bidirectional reversed convolutional neural network pathways to extract spectral features more efficiently.
Our approach combines the operational efficiency of CNNs with the dynamic feature extraction capability of attention mechanisms found in Transformers.
This approach improves classification accuracy beyond current benchmarks and addresses computational inefficiencies encountered with advanced models like Transformers.
arXiv Detail & Related papers (2024-03-30T07:27:36Z) - Hybrid Convolutional and Attention Network for Hyperspectral Image Denoising [54.110544509099526]
Hyperspectral image (HSI) denoising is critical for the effective analysis and interpretation of hyperspectral data.
We propose a hybrid convolution and attention network (HCANet) to enhance HSI denoising.
Experimental results on mainstream HSI datasets demonstrate the rationality and effectiveness of the proposed HCANet.
arXiv Detail & Related papers (2024-03-15T07:18:43Z) - MamMIL: Multiple Instance Learning for Whole Slide Images with State Space Models [56.37780601189795]
We propose a framework named MamMIL for WSI analysis.
We represent each WSI as an undirected graph.
To address the problem that Mamba can only process 1D sequences, we propose a topology-aware scanning mechanism.
arXiv Detail & Related papers (2024-03-08T09:02:13Z) - Spatial-Spectral Clustering with Anchor Graph for Hyperspectral Image [88.60285937702304]
This paper proposes a novel unsupervised approach called spatial-spectral clustering with anchor graph (SSCAG) for HSI data clustering.
The proposed SSCAG is competitive against the state-of-the-art approaches.
arXiv Detail & Related papers (2021-04-24T08:09:27Z) - Parameterized Hypercomplex Graph Neural Networks for Graph
Classification [1.1852406625172216]
We develop graph neural networks that leverage the properties of hypercomplex feature transformation.
In particular, in our proposed class of models, the multiplication rule specifying the algebra itself is inferred from the data during training.
We test our proposed hypercomplex GNN on several open graph benchmark datasets and show that our models reach state-of-the-art performance.
arXiv Detail & Related papers (2021-03-30T18:01:06Z) - Multi-Level Graph Convolutional Network with Automatic Graph Learning
for Hyperspectral Image Classification [63.56018768401328]
We propose a Multi-level Graph Convolutional Network (GCN) with Automatic Graph Learning method (MGCN-AGL) for HSI classification.
By employing attention mechanism to characterize the importance among spatially neighboring regions, the most relevant information can be adaptively incorporated to make decisions.
Our MGCN-AGL encodes the long range dependencies among image regions based on the expressive representations that have been produced at local level.
arXiv Detail & Related papers (2020-09-19T09:26:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.