MutualForce: Mutual-Aware Enhancement for 4D Radar-LiDAR 3D Object Detection
- URL: http://arxiv.org/abs/2501.10266v1
- Date: Fri, 17 Jan 2025 15:48:37 GMT
- Title: MutualForce: Mutual-Aware Enhancement for 4D Radar-LiDAR 3D Object Detection
- Authors: Xiangyuan Peng, Huawei Sun, Kay Bierzynski, Anton Fischbacher, Lorenzo Servadei, Robert Wille,
- Abstract summary: We propose a 4D radar-LiDAR framework to mutually enhance their representations.
First, the indicative features from radar are utilized to guide both radar and LiDAR geometric feature learning.
To mitigate their sparsity gap, the shape information from LiDAR is used to enrich radar BEV features.
- Score: 3.1212590312985986
- License:
- Abstract: Radar and LiDAR have been widely used in autonomous driving as LiDAR provides rich structure information, and radar demonstrates high robustness under adverse weather. Recent studies highlight the effectiveness of fusing radar and LiDAR point clouds. However, challenges remain due to the modality misalignment and information loss during feature extractions. To address these issues, we propose a 4D radar-LiDAR framework to mutually enhance their representations. Initially, the indicative features from radar are utilized to guide both radar and LiDAR geometric feature learning. Subsequently, to mitigate their sparsity gap, the shape information from LiDAR is used to enrich radar BEV features. Extensive experiments on the View-of-Delft (VoD) dataset demonstrate our approach's superiority over existing methods, achieving the highest mAP of 71.76% across the entire area and 86.36\% within the driving corridor. Especially for cars, we improve the AP by 4.17% and 4.20% due to the strong indicative features and symmetric shapes.
Related papers
- A Novel Multi-Teacher Knowledge Distillation for Real-Time Object Detection using 4D Radar [5.038148262901536]
3D object detection is crucial for safe autonomous navigation, requiring reliable performance across diverse weather conditions.
Traditional Radars have limitations due to their lack of elevation data.
4D Radars overcome this by measuring elevation alongside range, azimuth, and Doppler velocity, making them invaluable for autonomous vehicles.
arXiv Detail & Related papers (2025-02-10T02:48:56Z) - TransRAD: Retentive Vision Transformer for Enhanced Radar Object Detection [6.163747364795787]
We present TransRAD, a novel 3D radar object detection model.
We propose Location-Aware NMS to mitigate the common issue of duplicate bounding boxes in deep radar object detection.
Results demonstrate that TransRAD outperforms state-of-the-art methods in both 2D and 3D radar detection tasks.
arXiv Detail & Related papers (2025-01-29T20:21:41Z) - RadarPillars: Efficient Object Detection from 4D Radar Point Clouds [42.9356088038035]
We present RadarPillars, a pillar-based object detection network.
By decomposing radial velocity data, RadarPillars significantly outperform state-of-the-art detection results on the View-of-Delft dataset.
This comes at a significantly reduced parameter count, surpassing existing methods in terms of efficiency and enabling real-time performance on edge devices.
arXiv Detail & Related papers (2024-08-09T12:13:38Z) - Radar Fields: Frequency-Space Neural Scene Representations for FMCW Radar [62.51065633674272]
We introduce Radar Fields - a neural scene reconstruction method designed for active radar imagers.
Our approach unites an explicit, physics-informed sensor model with an implicit neural geometry and reflectance model to directly synthesize raw radar measurements.
We validate the effectiveness of the method across diverse outdoor scenarios, including urban scenes with dense vehicles and infrastructure.
arXiv Detail & Related papers (2024-05-07T20:44:48Z) - RadarDistill: Boosting Radar-based Object Detection Performance via Knowledge Distillation from LiDAR Features [15.686167262542297]
RadarDistill is a knowledge distillation (KD) method which can improve the representation of radar data by leveraging LiDAR data.
RadarDistill successfully transfers desirable characteristics of LiDAR features into radar features using three key components.
Our comparative analyses conducted on the nuScenes datasets demonstrate that RadarDistill achieves state-of-the-art (SOTA) performance for radar-only object detection task.
arXiv Detail & Related papers (2024-03-08T05:15:48Z) - Echoes Beyond Points: Unleashing the Power of Raw Radar Data in
Multi-modality Fusion [74.84019379368807]
We propose a novel method named EchoFusion to skip the existing radar signal processing pipeline.
Specifically, we first generate the Bird's Eye View (BEV) queries and then take corresponding spectrum features from radar to fuse with other sensors.
arXiv Detail & Related papers (2023-07-31T09:53:50Z) - Bi-LRFusion: Bi-Directional LiDAR-Radar Fusion for 3D Dynamic Object
Detection [78.59426158981108]
We introduce a bi-directional LiDAR-Radar fusion framework, termed Bi-LRFusion, to tackle the challenges and improve 3D detection for dynamic objects.
We conduct extensive experiments on nuScenes and ORR datasets, and show that our Bi-LRFusion achieves state-of-the-art performance for detecting dynamic objects.
arXiv Detail & Related papers (2023-06-02T10:57:41Z) - RadarFormer: Lightweight and Accurate Real-Time Radar Object Detection
Model [13.214257841152033]
Radar-centric data sets do not get a lot of attention in the development of deep learning techniques for radar perception.
We propose a transformers-based model, named RadarFormer, that utilizes state-of-the-art developments in vision deep learning.
Our model also introduces a channel-chirp-time merging module that reduces the size and complexity of our models by more than 10 times without compromising accuracy.
arXiv Detail & Related papers (2023-04-17T17:07:35Z) - LiRaNet: End-to-End Trajectory Prediction using Spatio-Temporal Radar
Fusion [52.59664614744447]
We present LiRaNet, a novel end-to-end trajectory prediction method which utilizes radar sensor information along with widely used lidar and high definition (HD) maps.
automotive radar provides rich, complementary information, allowing for longer range vehicle detection as well as instantaneous velocity measurements.
arXiv Detail & Related papers (2020-10-02T00:13:00Z) - RadarNet: Exploiting Radar for Robust Perception of Dynamic Objects [73.80316195652493]
We tackle the problem of exploiting Radar for perception in the context of self-driving cars.
We propose a new solution that exploits both LiDAR and Radar sensors for perception.
Our approach, dubbed RadarNet, features a voxel-based early fusion and an attention-based late fusion.
arXiv Detail & Related papers (2020-07-28T17:15:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.