Low-overhead Magic State Circuits with Transversal CNOTs
- URL: http://arxiv.org/abs/2501.10291v1
- Date: Fri, 17 Jan 2025 16:34:51 GMT
- Title: Low-overhead Magic State Circuits with Transversal CNOTs
- Authors: Nicholas Fazio, Mark Webster, Zhenyu Cai,
- Abstract summary: This paper examines the implications of CNOTs on magic state preparation.<n>We construct fault-tolerant circuits for CC, CS and T states with minimal T-depth and much lower CNOT and qubits.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the successful demonstration of transversal CNOTs in many recent experiments, it is the right moment to examine its implications on one of the most critical parts of fault-tolerant computation -- magic state preparation. Using an algorithm that can recompile and simplify a circuit of consecutive multi-qubit phase rotations, we manage to construct fault-tolerant circuits for CCZ, CS and T states with minimal T-depth and also much lower CNOT depths and qubit counts than before. These circuits can play crucial roles in fault-tolerant computation with transversal CNOTs, and we hope that the algorithms and methods developed in this paper can be used to further simplify other protocols in similar contexts.
Related papers
- Fast correlated decoding of transversal logical algorithms [67.01652927671279]
Quantum error correction (QEC) is required for large-scale computation, but incurs a significant resource overhead.<n>Recent advances have shown that by jointly decoding logical qubits in algorithms composed of logical gates, the number of syndrome extraction rounds can be reduced.<n>Here, we reform the problem of decoding circuits by directly decoding relevant logical operator products as they propagate through the circuit.
arXiv Detail & Related papers (2025-05-19T18:00:00Z) - Efficient Circuit Wire Cutting Based on Commuting Groups [8.60732674633629]
Current quantum devices face challenges when dealing with large circuits due to error rates as circuit size and the number of qubits increase.
circuit wire-cutting technique addresses this issue by breaking down a large circuit into smaller, more manageable subcircuits.
Inspired by ancilla-assisted quantum process tomography and the MUBs-based grouping technique for simultaneous measurement, we propose a new approach that can reduce subcircuit running overhead.
arXiv Detail & Related papers (2024-10-27T02:40:00Z) - Accelerating Error Correction Code Transformers [56.75773430667148]
We introduce a novel acceleration method for transformer-based decoders.
We achieve a 90% compression ratio and reduce arithmetic operation energy consumption by at least 224 times on modern hardware.
arXiv Detail & Related papers (2024-10-08T11:07:55Z) - On the Constant Depth Implementation of Pauli Exponentials [49.48516314472825]
We decompose arbitrary exponentials into circuits of constant depth using $mathcalO(n)$ ancillae and two-body XX and ZZ interactions.
We prove the correctness of our approach, after introducing novel rewrite rules for circuits which benefit from qubit recycling.
arXiv Detail & Related papers (2024-08-15T17:09:08Z) - Multi-qubit Lattice Surgery Scheduling [3.7126786554865774]
A quantum circuit can be transpiled into a sequence of solely non-Clifford multi-qubit gates.
We show that the transpilation significantly reduces the circuit length on the set of circuits tested.
The resulting circuit of multi-qubit gates has a further reduction in the expected circuit execution time compared to serial execution.
arXiv Detail & Related papers (2024-05-27T22:41:41Z) - Adaptive Planning Search Algorithm for Analog Circuit Verification [53.97809573610992]
We propose a machine learning (ML) approach, which uses less simulations.
We show that the proposed approach is able to provide OCCs closer to the specifications for all circuits.
arXiv Detail & Related papers (2023-06-23T12:57:46Z) - Circuit Cutting with Non-Maximally Entangled States [59.11160990637615]
Distributed quantum computing combines the computational power of multiple devices to overcome the limitations of individual devices.
circuit cutting techniques enable the distribution of quantum computations through classical communication.
Quantum teleportation allows the distribution of quantum computations without an exponential increase in shots.
We propose a novel circuit cutting technique that leverages non-maximally entangled qubit pairs.
arXiv Detail & Related papers (2023-06-21T08:03:34Z) - Approximate Quantum Circuit Cutting [4.3186101474291325]
Current and imminent quantum hardware lacks reliability and applicability due to noise and limited qubit counts.
Quantum circuit cutting -- a technique dividing large quantum circuits into smaller subcircuits with sizes appropriate for the limited quantum resource at hand -- is used to mitigate these problems.
This article introduces the notion of approximate circuit reconstruction.
arXiv Detail & Related papers (2022-12-02T16:04:52Z) - Decoding techniques applied to the compilation of CNOT circuits for NISQ
architectures [0.0]
We present a new algorithm for the synthesis of CNOT circuits based on the solution of the syndrome decoding problem.
Our method addresses the case of ideal hardware with an all-to-all qubit connectivity and the case of near-term quantum devices with restricted connectivity.
arXiv Detail & Related papers (2022-01-17T15:11:36Z) - Investigating the Scalability and Biological Plausibility of the
Activation Relaxation Algorithm [62.997667081978825]
Activation Relaxation (AR) algorithm provides a simple and robust approach for approximating the backpropagation of error algorithm.
We show that the algorithm can be further simplified and made more biologically plausible by introducing a learnable set of backwards weights.
We also investigate whether another biologically implausible assumption of the original AR algorithm -- the frozen feedforward pass -- can be relaxed without damaging performance.
arXiv Detail & Related papers (2020-10-13T08:02:38Z) - Fast and effective techniques for T-count reduction via spider nest
identities [0.27528170226206433]
We describe techniques to reduce the T-count, based on the effective application of "spider nest identities"
We demonstrate the effectiveness of such techniques by obtaining improvements in the T-counts of a number of circuits, in run-times which are typically less than the time required to make a fresh cup of coffee.
arXiv Detail & Related papers (2020-04-10T14:12:55Z) - Hardware-Encoding Grid States in a Non-Reciprocal Superconducting
Circuit [62.997667081978825]
We present a circuit design composed of a non-reciprocal device and Josephson junctions whose ground space is doubly degenerate and the ground states are approximate codewords of the Gottesman-Kitaev-Preskill (GKP) code.
We find that the circuit is naturally protected against the common noise channels in superconducting circuits, such as charge and flux noise, implying that it can be used for passive quantum error correction.
arXiv Detail & Related papers (2020-02-18T16:45:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.