論文の概要: An algorithm for determining the state of a non-stationary dynamic system for assessing fire safety control in an enterprise by the method of integrated indicators
- arxiv url: http://arxiv.org/abs/2501.10380v1
- Date: Tue, 17 Dec 2024 16:55:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-16 22:53:28.667553
- Title: An algorithm for determining the state of a non-stationary dynamic system for assessing fire safety control in an enterprise by the method of integrated indicators
- Title(参考訳): 統合指標法による企業の火災安全管理評価のための非定常力学系の状態決定アルゴリズム
- Authors: Sergey Masaev, Andrey Minkin, Dmitriy Edimichev,
- Abstract要約: 企業における火災安全管理を評価するアルゴリズムには,積分指標の手法が用いられている。
本研究は,企業状態を表す積分指標の値に有意な変化を示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Analysis of the scientific literature showed that a lot of work is devoted to assessing the effectiveness of fire safety management in an enterprise. It is worth noting that today there is no universal method for the integrated assessment of fire safety management, taking into account the interconnectedness of all enterprise subsystems and the influence of environmental factors. One of the original approaches to assessing the effectiveness of the fire safety management system is the method of integral indicators. The method of integral indicators is used in the algorithm for analyzing the state of a dynamic non-stationary system for assessing fire safety management in an enterprise. The algorithm is implemented in the author's complex of programs described in the text of the article. In the simulation, an analysis of 1.2 million values is performed on a well-studied economic object with the spaces identified at each time step: actual data, control and environmental parameters. In the experiment, the basic mode of operation of the enterprise does not contain the implementation of a fire safety management strategy. The research showed significant changes in the values of the integral indicator characterizing the state of the enterprise during the implementation of the fire safety management system at the enterprise.
- Abstract(参考訳): 分析の結果,企業における火災安全管理の有効性評価に多くの研究が費やされていることが明らかとなった。
なお、現在、すべての企業サブシステムの相互接続性や環境要因の影響を考慮し、火災安全管理の総合的な評価方法が存在しないことは注目に値する。
火災安全管理システムの有効性を評価するための最初のアプローチの1つは、積分指標の方法である。
企業における火災安全管理を評価するための動的非定常システムの状態を分析するアルゴリズムにおいて、積分指標の手法を用いる。
このアルゴリズムは、記事のテキストに記述されたプログラムの著者の複合体に実装されている。
シミュレーションでは, 実データ, 制御, 環境パラメータといった各時間ステップで特定される空間を持つ, 十分に研究された経済オブジェクト上で120万の値の解析を行う。
実験では, 企業の基本運用形態は, 火災安全管理戦略の実施を含まない。
本研究は, 企業における火災安全管理システム導入時の企業状況を特徴付ける積分指標の値に有意な変化が認められた。
関連論文リスト
- Adapting Probabilistic Risk Assessment for AI [0.0]
汎用人工知能(AI)システムは、緊急リスク管理の課題を示す。
現在の手法は、しばしば選択的なテストとリスク優先順位に関する未文書の仮定に依存します。
本稿では,AIフレームワークの確率的リスクアセスメント(PRA)を紹介する。
論文 参考訳(メタデータ) (2025-04-25T17:59:14Z) - Advancing Embodied Agent Security: From Safety Benchmarks to Input Moderation [52.83870601473094]
エンボディード・エージェントは、複数のドメインにまたがって大きな潜在能力を示す。
既存の研究は主に、一般的な大言語モデルのセキュリティに重点を置いている。
本稿では, エンボディエージェントの保護を目的とした新しい入力モデレーションフレームワークを提案する。
論文 参考訳(メタデータ) (2025-04-22T08:34:35Z) - AILuminate: Introducing v1.0 of the AI Risk and Reliability Benchmark from MLCommons [62.374792825813394]
本稿ではAI製品リスクと信頼性を評価するための業界標準ベンチマークとして,AIluminate v1.0を紹介する。
このベンチマークは、危険、違法、または望ましくない行動を12の危険カテゴリーで引き起こすように設計されたプロンプトに対するAIシステムの抵抗を評価する。
論文 参考訳(メタデータ) (2025-02-19T05:58:52Z) - A Human-Centered Risk Evaluation of Biometric Systems Using Conjoint Analysis [0.6199770411242359]
本稿では, コンジョイント分析を用いて, 監視カメラなどのリスク要因が攻撃者のモチベーションに与える影響を定量化するために, 新たな人間中心型リスク評価フレームワークを提案する。
本フレームワークは、False Acceptance Rate(FAR)とアタック確率を組み込んだリスク値を算出し、ユースケース間の総合的な比較を可能にする。
論文 参考訳(メタデータ) (2024-09-17T14:18:21Z) - EARBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [53.717918131568936]
EAI(Embodied AI)は、高度なAIモデルを現実世界のインタラクションのための物理的なエンティティに統合する。
高レベルのタスク計画のためのEAIエージェントの"脳"としてのファンデーションモデルは、有望な結果を示している。
しかし、これらのエージェントの物理的環境への展開は、重大な安全性上の課題を呈している。
本研究では,EAIシナリオにおける身体的リスクの自動評価のための新しいフレームワークEARBenchを紹介する。
論文 参考訳(メタデータ) (2024-08-08T13:19:37Z) - Dynamic Vulnerability Criticality Calculator for Industrial Control Systems [0.0]
本稿では,動的脆弱性臨界計算機を提案する革新的な手法を提案する。
本手法は, 環境トポロジの分析と, 展開されたセキュリティ機構の有効性を包含する。
本手法では,これらの要因を総合的なファジィ認知マップモデルに統合し,攻撃経路を組み込んで全体の脆弱性スコアを総合的に評価する。
論文 参考訳(メタデータ) (2024-03-20T09:48:47Z) - AI-Based Energy Transportation Safety: Pipeline Radial Threat Estimation
Using Intelligent Sensing System [52.93806509364342]
本稿では,分散光ファイバーセンシング技術に基づくエネルギーパイプラインの放射状脅威推定手法を提案する。
本稿では,包括的信号特徴抽出のための連続的マルチビュー・マルチドメイン機能融合手法を提案する。
本研究では,事前学習モデルによる伝達学習の概念を取り入れ,認識精度と学習効率の両立を図る。
論文 参考訳(メタデータ) (2023-12-18T12:37:35Z) - Sociotechnical Safety Evaluation of Generative AI Systems [13.546708226350963]
生成AIシステムは、さまざまなリスクを生み出す。
生成AIシステムの安全性を確保するためには、これらのリスクを評価する必要がある。
本稿では,これらのリスクを評価するための構造的,社会学的アプローチを取り入れた3層フレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-18T14:13:58Z) - Leveraging Traceability to Integrate Safety Analysis Artifacts into the
Software Development Process [51.42800587382228]
安全保証ケース(SAC)は、システムの進化中に維持することが困難である。
本稿では,ソフトウェアトレーサビリティを活用して,関連するシステムアーチファクトを安全解析モデルに接続する手法を提案する。
安全ステークホルダーがシステム変更が安全性に与える影響を分析するのに役立つように、システム変更の合理性を設計する。
論文 参考訳(メタデータ) (2023-07-14T16:03:27Z) - Evaluating Model-free Reinforcement Learning toward Safety-critical
Tasks [70.76757529955577]
本稿では、国家安全RLの観点から、この領域における先行研究を再考する。
安全最適化と安全予測を組み合わせた共同手法であるUnrolling Safety Layer (USL)を提案する。
この領域のさらなる研究を容易にするため、我々は関連するアルゴリズムを統一パイプラインで再現し、SafeRL-Kitに組み込む。
論文 参考訳(メタデータ) (2022-12-12T06:30:17Z) - Modeling and mitigation of occupational safety risks in dynamic
industrial environments [0.0]
本稿では,データ駆動方式で安全リスクを連続的かつ定量的に評価する手法を提案する。
オンライン形式で安全データからこのモデルを校正するために、完全なベイズ的アプローチが開発されている。
提案したモデルは自動意思決定に利用することができる。
論文 参考訳(メタデータ) (2022-05-02T13:04:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。