論文の概要: Do we actually understand the impact of renewables on electricity prices? A causal inference approach
- arxiv url: http://arxiv.org/abs/2501.10423v1
- Date: Fri, 10 Jan 2025 10:45:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-26 02:40:06.014732
- Title: Do we actually understand the impact of renewables on electricity prices? A causal inference approach
- Title(参考訳): 再生可能エネルギーが電力価格に与える影響を実際に理解しているか? : 因果推論アプローチ
- Authors: Davide Cacciarelli, Pierre Pinson, Filip Panagiotopoulos, David Dixon, Lizzie Blaxland,
- Abstract要約: 風力発電は価格にU字型の影響がある。
低浸透レベルでは、エネルギー発生の1GWhの増加は、価格を最大7GBP/MWhまで下げる。
太陽エネルギーは、非常に低い浸透水準の価格にかなり下向きの圧力をかける。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The energy transition is profoundly reshaping electricity market dynamics. It makes it essential to understand how renewable energy generation actually impacts electricity prices, among all other market drivers. These insights are critical to design policies and market interventions that ensure affordable, reliable, and sustainable energy systems. However, identifying causal effects from observational data is a major challenge, requiring innovative causal inference approaches that go beyond conventional regression analysis only. We build upon the state of the art by developing and applying a local partially linear double machine learning approach. Its application yields the first robust causal evidence on the distinct and non-linear effects of wind and solar power generation on UK wholesale electricity prices, revealing key insights that have eluded previous analyses. We find that, over 2018-2024, wind power generation has a U-shaped effect on prices: at low penetration levels, a 1 GWh increase in energy generation reduces prices by up to 7 GBP/MWh, but this effect gets close to none at mid-penetration levels (20-30%) before intensifying again. Solar power places substantial downward pressure on prices at very low penetration levels (up to 9 GBP/MWh per 1 GWh increase in energy generation), though its impact weakens quite rapidly. We also uncover a critical trend where the price-reducing effects of both wind and solar power have become more pronounced over time (from 2018 to 2024), highlighting their growing influence on electricity markets amid rising penetration. Our study provides both novel analysis approaches and actionable insights to guide policymakers in appraising the way renewables impact electricity markets.
- Abstract(参考訳): エネルギーの遷移は、電気市場のダイナミクスを大きく変えつつある。
再生可能エネルギーの発電が、他のすべての市場ドライバーの電力価格にどのように影響するかを理解することが不可欠である。
これらの洞察は、安価で信頼性があり持続可能なエネルギーシステムを確保するための政策や市場の介入の設計に不可欠である。
しかし、観測データから因果的影響を特定することは大きな課題であり、従来の回帰分析を超越した革新的な因果的推論アプローチが必要である。
我々は、局所的な部分線形2重機械学習アプローチを開発し応用することによって、最先端技術の上に構築する。
その応用は、風力と太陽光発電が英国での電力価格に与える影響について、最初の堅牢な因果関係の証拠となり、以前の分析から得られた重要な洞察を明らかにした。
2018~2024年の間、風力発電は価格にU字型の影響が見られ、低浸透レベルでは1GWhのエネルギー消費が最大7GBP/MWhの価格を下げるが、この効果は再び強まる前に、中浸透レベル(20~30%)には及ばない。
太陽エネルギーは、非常に低い浸透レベル(1GWh当たり9GBP/MWhまで上昇する)で価格にかなりの下降圧力を与えるが、その影響は急速に弱まる。
また、風力と太陽エネルギーの価格低下効果が時間とともに顕著になり(2018年から2024年まで)、浸透が進む中、電力市場への影響が拡大していることも明らかにした。
本研究は, 再生可能エネルギーが電力市場に与える影響を評価する上で, 政策立案者に対して, 新たな分析手法と実用的な洞察を提供するものである。
関連論文リスト
- From Efficiency Gains to Rebound Effects: The Problem of Jevons' Paradox in AI's Polarized Environmental Debate [69.05573887799203]
この議論の多くは、大きな間接効果に対処することなく直接的影響に集中している。
本稿では,Jevonsのパラドックス問題がどのようにAIに適用され,効率向上がパラドックス的に消費増加を促すかを検討する。
これらの2次の影響を理解するには、ライフサイクルアセスメントと社会経済分析を組み合わせた学際的アプローチが必要であると論じる。
論文 参考訳(メタデータ) (2025-01-27T22:45:06Z) - Forecasting Day-Ahead Electricity Prices in the Integrated Single Electricity Market: Addressing Volatility with Comparative Machine Learning Methods [0.552480439325792]
本稿では,アイルランド総合電力市場を中心に,電力価格予測手法の総合的な検討を行う。
本研究の主な目的は,様々な予測モデルの性能を評価し,比較することである。
この論文は、毎日のEU天然ガス価格が、ヘンリー・ハブ天然ガス価格よりもアイルランドの電力価格予測に有用な特徴であることを実証している。
論文 参考訳(メタデータ) (2024-08-10T20:43:21Z) - Reinforcement Learning Enabled Peer-to-Peer Energy Trading for Dairy Farms [1.2289361708127877]
本研究の目的は、ピアツーピア市場で余剰再生可能エネルギーを販売できるようにすることにより、伝統的な電力網への農作物の依存度を下げることである。
The Multi-Agent Peer-to-Peer Dairy Farm Energy Simulator (MAPDES) has developed to experiment with Reinforcement Learning techniques。
シミュレーションでは、電力コストの43%削減、ピーク需要の42%削減、エネルギー販売の1.91%増加など、大幅なコスト削減が示されている。
論文 参考訳(メタデータ) (2024-05-21T12:19:17Z) - Price-Aware Deep Learning for Electricity Markets [58.3214356145985]
深層学習層として電力市場浄化最適化を組み込むことを提案する。
このレイヤを差別化することで、予測と価格エラーのバランスをとることができる。
風力発電予測と短期電力市場浄化のネクサスにおける価格認識深層学習について紹介する。
論文 参考訳(メタデータ) (2023-08-02T21:16:05Z) - Understanding electricity prices beyond the merit order principle using
explainable AI [0.0]
完全競争において、利益秩序原則は、送電可能な発電所がその限界コストの順に市場に入ることを記述している。
多くの市場モデルは、電気価格を予測するためにこの原則を実装しているが、通常は特定の仮定と単純化を必要とする。
我々は、ドイツの日頭市場における価格について説明可能な機械学習モデルを提示し、ベンチマークモデルを大幅に上回っている。
論文 参考訳(メタデータ) (2022-12-09T12:18:17Z) - Electricity Price Forecasting Model based on Gated Recurrent Units [0.0]
本稿では, Gated Recurrent Units に基づく電力価格予測モデルを提案する。
電力価格の騒音は分析の効率と効率を著しく低下させる。
提案手法は電力価格の予測に有効である。
論文 参考訳(メタデータ) (2022-07-28T16:49:03Z) - Forecasting Electricity Prices [0.0]
電力システムの安定性は、生産と消費のバランスを一定に保つことを要求する。
断続的再生可能エネルギー源の急速な拡大は、コストのかかる蓄電容量の増加によって相殺されない。
比較的擬似的な計量(あるいは統計)モデルから、より複雑で理解しにくいものへのシフトがある。
ケーススタディは、異なるモデルから得られた価格予測に基づいて、スケジューリングやトレーディング戦略の利益を比較する。
論文 参考訳(メタデータ) (2022-04-25T15:46:26Z) - Compute and Energy Consumption Trends in Deep Learning Inference [67.32875669386488]
コンピュータビジョンと自然言語処理の分野における関連モデルについて検討する。
継続的な性能向上のために、これまで予想されていたよりもエネルギー消費の軟化が見られた。
論文 参考訳(メタデータ) (2021-09-12T09:40:18Z) - The impact of online machine-learning methods on long-term investment
decisions and generator utilization in electricity markets [69.68068088508505]
電力需要プロファイルを24時間以内に予測するために,オフライン11とオンライン5の学習アルゴリズムが与える影響を調査した。
最良オフラインアルゴリズムと比較して,オンラインアルゴリズムを用いて平均絶対誤差を30%削減できることを示した。
また,予測精度の大きな誤差は,17年間の投資に不均等な誤差があることを示す。
論文 参考訳(メタデータ) (2021-03-07T11:28:54Z) - Exploring market power using deep reinforcement learning for intelligent
bidding strategies [69.3939291118954]
キャパシティが1年の平均的な電力価格に影響を及ぼすことがわかりました。
$sim$25%と$sim$11%の値は、市場構造と国によって異なる可能性がある。
平均市場価格の約2倍の市場上限の使用は、この効果を著しく減少させ、競争力のある市場を維持する効果があることを観察する。
論文 参考訳(メタデータ) (2020-11-08T21:07:42Z) - Towards a Peer-to-Peer Energy Market: an Overview [68.8204255655161]
本研究は, 電力市場を中心に, 現状と, プロシューマーによる分散型自己生成能力の増大傾向を比較した。
我々はP2P(Peer-to-Peer)エネルギー市場のための潜在的多層アーキテクチャを導入し、マイクログリッドの一部として、地域生産と地域消費の基本的な側面について議論する。
読者に全体像を示すため、スマートコントラクトやグリッド安定性といったエネルギー取引の関連要素についても精査する。
論文 参考訳(メタデータ) (2020-03-02T20:32:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。