論文の概要: Understanding electricity prices beyond the merit order principle using
explainable AI
- arxiv url: http://arxiv.org/abs/2212.04805v1
- Date: Fri, 9 Dec 2022 12:18:17 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-12 15:47:47.226304
- Title: Understanding electricity prices beyond the merit order principle using
explainable AI
- Title(参考訳): 説明可能なAIを用いたメリット注文の原理を超えた電気価格の理解
- Authors: Julius Trebbien, Leonardo Rydin Gorj\~ao, Aaron Praktiknjo, Benjamin
Sch\"afer, Dirk Witthaut
- Abstract要約: 完全競争において、利益秩序原則は、送電可能な発電所がその限界コストの順に市場に入ることを記述している。
多くの市場モデルは、電気価格を予測するためにこの原則を実装しているが、通常は特定の仮定と単純化を必要とする。
我々は、ドイツの日頭市場における価格について説明可能な機械学習モデルを提示し、ベンチマークモデルを大幅に上回っている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Electricity prices in liberalized markets are determined by the supply and
demand for electric power, which are in turn driven by various external
influences that vary strongly in time. In perfect competition, the merit order
principle describes that dispatchable power plants enter the market in the
order of their marginal costs to meet the residual load, i.e. the difference of
load and renewable generation. Many market models implement this principle to
predict electricity prices but typically require certain assumptions and
simplifications. In this article, we present an explainable machine learning
model for the prices on the German day-ahead market, which substantially
outperforms a benchmark model based on the merit order principle. Our model is
designed for the ex-post analysis of prices and thus builds on various external
features. Using Shapley Additive exPlanation (SHAP) values, we can disentangle
the role of the different features and quantify their importance from empiric
data. Load, wind and solar generation are most important, as expected, but wind
power appears to affect prices stronger than solar power does. Fuel prices also
rank highly and show nontrivial dependencies, including strong interactions
with other features revealed by a SHAP interaction analysis. Large generation
ramps are correlated with high prices, again with strong feature interactions,
due to the limited flexibility of nuclear and lignite plants. Our results
further contribute to model development by providing quantitative insights
directly from data.
- Abstract(参考訳): 自由市場における電力価格は、電力の供給と需要によって決まるが、これは時間によって大きく異なる様々な外部の影響によって引き起こされる。
完全競争においては、配電可能な発電所が残負荷を満たすための限界費用の順に市場に参入すること、すなわち負荷と再生可能発電の差をいう。
多くの市場モデルは電力価格を予測するためにこの原則を実装しているが、通常は特定の仮定と単純化を必要とする。
本稿では,ドイツのデイ・アヘッド市場における価格の説明可能な機械学習モデルについて述べる。
我々のモデルは価格のポスト分析のために設計されており、様々な外的特徴に基づいている。
Shapley Additive exPlanation(SHAP)の値を使うことで、異なる機能の役割を切り離し、経験的データからそれらの重要性を定量化できます。
風力、風力、発電は予想通り重要であるが、風力は太陽エネルギーよりも強い価格に影響しているように見える。
燃料価格も高く評価され、SHAP相互作用分析によって明らかになった他の特徴との強い相互作用を含む非自明な依存を示す。
大世代のランプは、原子力発電所とリグライト工場の柔軟性が制限されているため、価格の上昇と強い特徴相互作用と相関している。
また,データから直接定量的な洞察を提供することにより,モデル開発にも貢献した。
関連論文リスト
- Forecasting Day-Ahead Electricity Prices in the Integrated Single Electricity Market: Addressing Volatility with Comparative Machine Learning Methods [0.552480439325792]
本稿では,アイルランド総合電力市場を中心に,電力価格予測手法の総合的な検討を行う。
本研究の主な目的は,様々な予測モデルの性能を評価し,比較することである。
この論文は、毎日のEU天然ガス価格が、ヘンリー・ハブ天然ガス価格よりもアイルランドの電力価格予測に有用な特徴であることを実証している。
論文 参考訳(メタデータ) (2024-08-10T20:43:21Z) - Power Hungry Processing: Watts Driving the Cost of AI Deployment? [74.19749699665216]
生成された多目的AIシステムは、機械学習(ML)モデルをテクノロジに構築するための統一的なアプローチを約束する。
この「一般性」の野心は、これらのシステムが必要とするエネルギー量と放出する炭素量を考えると、環境に急激なコストがかかる。
これらのモデルを用いて,代表的なベンチマークデータセット上で1,000の推論を行うのに必要なエネルギーと炭素の量として,デプロイメントコストを測定した。
本稿は、多目的MLシステムの展開動向に関する議論から締めくくり、エネルギーと排出の面でコストの増大に対して、その実用性はより意図的に重み付けされるべきである、と警告する。
論文 参考訳(メタデータ) (2023-11-28T15:09:36Z) - A Machine Learning Framework to Deconstruct the Primary Drivers for
Electricity Market Price Events [0.8192907805418581]
電力グリッドは100%再生可能エネルギー源バルク電力グリッドに向かっている。
従来の根本原因分析と統計的アプローチは、価格形成の背後にある主要な要因を分析し、推測するために適用できない。
再生可能エネルギーの高い近代電力市場における価格スパイクイベントの主要因を分解する機械学習に基づく分析フレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-12T09:24:21Z) - Benchmarks and Custom Package for Energy Forecasting [55.460452605056894]
エネルギー予測は、電力グリッドディスパッチのようなその後のタスクのコストを最小化することを目的としている。
本稿では,大規模負荷データセットを収集し,再生可能エネルギーデータセットを新たにリリースした。
評価指標の異なるレベルにおいて,21種類の予測手法を用いた広範囲な実験を行った。
論文 参考訳(メタデータ) (2023-07-14T06:50:02Z) - Simulation-based Forecasting for Intraday Power Markets: Modelling
Fundamental Drivers for Location, Shape and Scale of the Price Distribution [0.0]
本研究では,日内市場におけるリターン分布の位置,形状,スケールパラメータのモデル化手法を提案する。
風と太陽の予測と、その日内更新、停電、価格情報、および、メリットの順序を形作るための新しい尺度について検討する。
ボラティリティは、利益秩序体制、納期、国境を越えた注文書の閉鎖によってもたらされる。
論文 参考訳(メタデータ) (2022-11-23T15:08:50Z) - Electricity Price Forecasting Model based on Gated Recurrent Units [0.0]
本稿では, Gated Recurrent Units に基づく電力価格予測モデルを提案する。
電力価格の騒音は分析の効率と効率を著しく低下させる。
提案手法は電力価格の予測に有効である。
論文 参考訳(メタデータ) (2022-07-28T16:49:03Z) - Machine learning applications for electricity market agent-based models:
A systematic literature review [68.8204255655161]
エージェントベースのシミュレーションは、電気市場のダイナミクスをよりよく理解するために使用される。
エージェントベースのモデルは、機械学習と人工知能を統合する機会を提供する。
我々は、エージェントベースの電気市場モデルに適用された機械学習に焦点を当てた2016年から2021年の間に発行された55の論文をレビューする。
論文 参考訳(メタデータ) (2022-06-05T14:52:26Z) - Multivariate Probabilistic Forecasting of Intraday Electricity Prices
using Normalizing Flows [62.997667081978825]
ドイツでは、日内電気価格は通常、EPEXスポット市場の1日当たりの価格に異なる時間帯で変動する。
本研究は,日頭契約の日内価格差をモデル化する確率論的モデリング手法を提案する。
論文 参考訳(メタデータ) (2022-05-27T08:38:20Z) - Exploring market power using deep reinforcement learning for intelligent
bidding strategies [69.3939291118954]
キャパシティが1年の平均的な電力価格に影響を及ぼすことがわかりました。
$sim$25%と$sim$11%の値は、市場構造と国によって異なる可能性がある。
平均市場価格の約2倍の市場上限の使用は、この効果を著しく減少させ、競争力のある市場を維持する効果があることを観察する。
論文 参考訳(メタデータ) (2020-11-08T21:07:42Z) - A Deep Learning Forecaster with Exogenous Variables for Day-Ahead
Locational Marginal Price [0.0]
本稿では,非規制エネルギー市場における日頭位置限界価格(daLMP)を予測するためのディープラーニングモデルを提案する。
この記事では、提案モデルが従来の時系列技術より優れていることを示し、シャットダウン決定のリスクベースの分析をサポートする。
論文 参考訳(メタデータ) (2020-10-13T16:34:13Z) - Towards a Peer-to-Peer Energy Market: an Overview [68.8204255655161]
本研究は, 電力市場を中心に, 現状と, プロシューマーによる分散型自己生成能力の増大傾向を比較した。
我々はP2P(Peer-to-Peer)エネルギー市場のための潜在的多層アーキテクチャを導入し、マイクログリッドの一部として、地域生産と地域消費の基本的な側面について議論する。
読者に全体像を示すため、スマートコントラクトやグリッド安定性といったエネルギー取引の関連要素についても精査する。
論文 参考訳(メタデータ) (2020-03-02T20:32:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。