論文の概要: Efficient Traffic Prediction Through Spatio-Temporal Distillation
- arxiv url: http://arxiv.org/abs/2501.10459v2
- Date: Tue, 11 Mar 2025 06:38:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-12 19:15:48.926376
- Title: Efficient Traffic Prediction Through Spatio-Temporal Distillation
- Title(参考訳): 時空間蒸留による効率的な交通予測
- Authors: Qianru Zhang, Xinyi Gao, Haixin Wang, Siu-Ming Yiu, Hongzhi Yin,
- Abstract要約: グラフベースのネットワーク(GNN)は、グラフベースのメッセージパッシングフレームワークを通じてパターンパターンを学習することができる。
GNNはトラフィックフロー予測の処理において大きな可能性を秘めているが、実際のアプリケーションへの展開はスケーラビリティの制約によって妨げられている。
本研究では,高能力教師から軽量学生への時間的知識提供を支援する新しい知識蒸留パラダイムを提案する。
- 参考スコア(独自算出の注目度): 36.076651435512865
- License:
- Abstract: Graph neural networks (GNNs) have gained considerable attention in recent years for traffic flow prediction due to their ability to learn spatio-temporal pattern representations through a graph-based message-passing framework. Although GNNs have shown great promise in handling traffic datasets, their deployment in real-life applications has been hindered by scalability constraints arising from high-order message passing. Additionally, the over-smoothing problem of GNNs may lead to indistinguishable region representations as the number of layers increases, resulting in performance degradation. To address these challenges, we propose a new knowledge distillation paradigm termed LightST that transfers spatial and temporal knowledge from a high-capacity teacher to a lightweight student. Specifically, we introduce a spatio-temporal knowledge distillation framework that helps student MLPs capture graph-structured global spatio-temporal patterns while alleviating the over-smoothing effect with adaptive knowledge distillation. Extensive experiments verify that LightST significantly speeds up traffic flow predictions by 5X to 40X compared to state-of-the-art spatio-temporal GNNs, all while maintaining superior accuracy.
- Abstract(参考訳): グラフベースのメッセージパッシングフレームワークを通じて時空間パターン表現を学習する能力により,近年,トラフィックフロー予測においてグラフニューラルネットワーク(GNN)が注目されている。
GNNはトラフィックデータセットの処理において大きな可能性を示しているが、実際のアプリケーションへの展開は、高次のメッセージパッシングに起因するスケーラビリティの制約によって妨げられている。
さらに、GNNの過度なスムース化問題は、層数が増加するにつれて識別不能な領域表現をもたらし、性能が低下する可能性がある。
これらの課題に対処するために,高能力教師から軽量学生に空間的・時間的知識を伝達するLightSTと呼ばれる新しい知識蒸留パラダイムを提案する。
具体的には, グラフ構造化グローバル時空間パターンの抽出を支援するとともに, 適応的知識蒸留による過密効果を緩和する時空間知識蒸留フレームワークを提案する。
大規模な実験により、LightSTは、最先端の時空間GNNと比較して、トラフィックフローの予測を5倍から40倍に大幅に高速化し、精度を向上した。
関連論文リスト
- Virtual Nodes Improve Long-term Traffic Prediction [9.125554921271338]
本研究では,仮想ノードを組み込んだ新しいフレームワークを紹介し,グラフに追加したノードを既存ノードに接続する。
提案モデルでは,セミアダプティブ・アジャシエイト行列を構築し,仮想ノードを組み込んだ。
実験により,仮想ノードの挿入は長期予測精度を著しく向上させることが示された。
論文 参考訳(メタデータ) (2025-01-17T09:09:01Z) - Conservation-informed Graph Learning for Spatiotemporal Dynamics Prediction [84.26340606752763]
本稿では,保護インフォームドGNN(CiGNN)について紹介する。
このネットワークは、保守的かつ非保守的な情報が、潜時的行進戦略によって多次元空間を通過する対称性による一般的な対称性保存則に従うように設計されている。
結果は,CiGNNが顕著なベースライン精度と一般化性を示し,様々な時間的ダイナミクスの予測のための学習に容易に適用可能であることを示した。
論文 参考訳(メタデータ) (2024-12-30T13:55:59Z) - ST-FiT: Inductive Spatial-Temporal Forecasting with Limited Training Data [59.78770412981611]
現実世界のアプリケーションでは、ほとんどのノードはトレーニング中に利用可能な時間データを持っていないかもしれない。
この問題に対処するために,ST-FiTというフレームワークを提案する。
論文 参考訳(メタデータ) (2024-12-14T17:51:29Z) - EasyST: A Simple Framework for Spatio-Temporal Prediction [18.291117879544945]
本稿では,時空間予測のための簡単なフレームワークであるEasySTパラダイムを提案する。
複雑な時間的GNNからの知識を蒸留することにより、軽量で堅牢なマルチ層パーセプトロン(MLP)の一般化を学習する。
EasySTは、効率と精度の点で最先端のアプローチを超越している。
論文 参考訳(メタデータ) (2024-09-10T11:40:01Z) - A novel hybrid time-varying graph neural network for traffic flow forecasting [3.6623539239888556]
インテリジェント交通システムの効率化には,リアルタイムかつ正確な交通流予測が不可欠である。
従来のグラフニューラルネットワーク(GNN)は、都市道路網における交通ノード間の空間的相関を記述するために用いられる。
我々は交通流予測のための新しいハイブリッド時変グラフニューラルネットワーク(HTVGNN)を提案している。
論文 参考訳(メタデータ) (2024-01-17T07:21:36Z) - TempME: Towards the Explainability of Temporal Graph Neural Networks via
Motif Discovery [15.573944320072284]
本稿では、時間グラフニューラルネットワーク(TGNN)の予測を導く最も重要な時間的モチーフを明らかにするTempMEを提案する。
TempMEは、最も相互作用に関連するモチーフを抽出し、含んでいる情報の量を最小化し、説明の空間性と簡潔性を維持する。
実験では、TempMEの優位性が検証され、6つの実世界のデータセットで説明精度が最大8.21%向上し、現在のTGNNの平均精度が最大22.96%向上した。
論文 参考訳(メタデータ) (2023-10-30T07:51:41Z) - Spatio-Temporal Meta Contrastive Learning [18.289397543341707]
頑健で一般化可能なS時間グラフ表現を符号化する新しい時間的コントラスト学習フレームワークを提案する。
本稿では,交通犯罪予測における各種技術ベースラインの性能向上について述べる。
論文 参考訳(メタデータ) (2023-10-26T04:56:31Z) - Accelerating Scalable Graph Neural Network Inference with Node-Adaptive
Propagation [80.227864832092]
グラフニューラルネットワーク(GNN)は、様々なアプリケーションで例外的な効果を発揮している。
大規模グラフの重大化は,GNNによるリアルタイム推論において重要な課題となる。
本稿では,オンライン伝搬フレームワークと2つの新しいノード適応伝搬手法を提案する。
論文 参考訳(メタデータ) (2023-10-17T05:03:00Z) - Spatio-Temporal Graph Few-Shot Learning with Cross-City Knowledge
Transfer [58.6106391721944]
クロスシティの知識は、データ不足の都市から学んだモデルを活用して、データ不足の都市の学習プロセスに役立てるという、その将来性を示している。
本稿では,ST-GFSLと呼ばれるS時間グラフのためのモデルに依存しない数ショット学習フレームワークを提案する。
本研究では,4つの交通速度予測ベンチマークの総合的な実験を行い,ST-GFSLの有効性を最先端手法と比較した。
論文 参考訳(メタデータ) (2022-05-27T12:46:52Z) - Spatio-Temporal Graph Scattering Transform [54.52797775999124]
グラフニューラルネットワークは、十分な高品質のトレーニングデータがないために、現実のシナリオでは実用的ではないかもしれない。
我々は時間的データを解析するための数学的に設計された新しいフレームワークを考案した。
論文 参考訳(メタデータ) (2020-12-06T19:49:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。