Incorporating Classifier-Free Guidance in Diffusion Model-Based Recommendation
- URL: http://arxiv.org/abs/2409.10494v1
- Date: Mon, 16 Sep 2024 17:27:27 GMT
- Title: Incorporating Classifier-Free Guidance in Diffusion Model-Based Recommendation
- Authors: Noah Buchanan, Susan Gauch, Quan Mai,
- Abstract summary: Diffusion is a new approach to generative AI that improves on previous generative AI approaches.
We incorporate diffusion in a recommender system that mirrors the sequence users take when browsing and rating items.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a diffusion-based recommender system that incorporates classifier-free guidance. Most current recommender systems provide recommendations using conventional methods such as collaborative or content-based filtering. Diffusion is a new approach to generative AI that improves on previous generative AI approaches such as Variational Autoencoders (VAEs) and Generative Adversarial Networks (GANs). We incorporate diffusion in a recommender system that mirrors the sequence users take when browsing and rating items. Although a few current recommender systems incorporate diffusion, they do not incorporate classifier-free guidance, a new innovation in diffusion models as a whole. In this paper, we present a diffusion recommender system that augments the underlying recommender system model for improved performance and also incorporates classifier-free guidance. Our findings show improvements over state-of-the-art recommender systems for most metrics for several recommendation tasks on a variety of datasets. In particular, our approach demonstrates the potential to provide better recommendations when data is sparse.
Related papers
- Diffusion Models in Recommendation Systems: A Survey [8.741075482543991]
Diffusion models in recommender systems excel in managing complex user and item distributions.
We propose a taxonomy on past research papers in recommender systems that utilize diffusion models.
We present the foundation algorithms in diffusion models and their applications in recommender systems.
arXiv Detail & Related papers (2025-01-17T20:43:47Z) - A Survey on Diffusion Models for Recommender Systems [36.543994040915926]
We present the first comprehensive survey on diffusion models for recommendation.
DMs have emerged as promising solutions for recommender systems due to their robust generative capabilities.
Our taxonomy highlights the unique strengths of diffusion models in capturing complex data distributions.
arXiv Detail & Related papers (2024-09-08T08:57:12Z) - Bridging User Dynamics: Transforming Sequential Recommendations with Schrödinger Bridge and Diffusion Models [49.458914600467324]
We introduce the Schr"odinger Bridge into diffusion-based sequential recommendation models, creating the SdifRec model.
We also propose an extended version of SdifRec called con-SdifRec, which utilizes user clustering information as a guiding condition.
arXiv Detail & Related papers (2024-08-30T09:10:38Z) - Making Recommender Systems More Knowledgeable: A Framework to Incorporate Side Information [5.033504076393256]
We propose a general framework for incorporating item-specific side information into the recommender system to enhance its performance.
We show that with side information, our recommender system outperforms state-of-the-art models by a considerable margin.
We also propose a new type of loss to regularize the attention mechanism used by recommender systems and evaluate its influence on model performance.
arXiv Detail & Related papers (2024-06-02T04:33:52Z) - Source Echo Chamber: Exploring the Escalation of Source Bias in User, Data, and Recommender System Feedback Loop [65.23044868332693]
We investigate the impact of source bias on the realm of recommender systems.
We show the prevalence of source bias and reveal a potential digital echo chamber with source bias amplification.
We introduce a black-box debiasing method that maintains model impartiality towards both HGC and AIGC.
arXiv Detail & Related papers (2024-05-28T09:34:50Z) - Mirror Gradient: Towards Robust Multimodal Recommender Systems via
Exploring Flat Local Minima [54.06000767038741]
We analyze multimodal recommender systems from the novel perspective of flat local minima.
We propose a concise yet effective gradient strategy called Mirror Gradient (MG)
We find that the proposed MG can complement existing robust training methods and be easily extended to diverse advanced recommendation models.
arXiv Detail & Related papers (2024-02-17T12:27:30Z) - Diffusion Augmentation for Sequential Recommendation [47.43402785097255]
We propose a Diffusion Augmentation for Sequential Recommendation (DiffuASR) for a higher quality generation.
The augmented dataset by DiffuASR can be used to train the sequential recommendation models directly, free from complex training procedures.
We conduct extensive experiments on three real-world datasets with three sequential recommendation models.
arXiv Detail & Related papers (2023-09-22T13:31:34Z) - Impression-Aware Recommender Systems [53.48892326556546]
We present a systematic literature review on recommender systems using impressions.
We define a theoretical framework to delimit recommender systems using impressions and a novel paradigm for personalized recommendations, called impression-aware recommender systems.
arXiv Detail & Related papers (2023-08-15T16:16:02Z) - Deep Variational Models for Collaborative Filtering-based Recommender
Systems [63.995130144110156]
Deep learning provides accurate collaborative filtering models to improve recommender system results.
Our proposed models apply the variational concept to injectity in the latent space of the deep architecture.
Results show the superiority of the proposed approach in scenarios where the variational enrichment exceeds the injected noise effect.
arXiv Detail & Related papers (2021-07-27T08:59:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.