Solving Finite-Horizon MDPs via Low-Rank Tensors
- URL: http://arxiv.org/abs/2501.10598v1
- Date: Fri, 17 Jan 2025 23:10:50 GMT
- Title: Solving Finite-Horizon MDPs via Low-Rank Tensors
- Authors: Sergio Rozada, Jose Luis Orejuela, Antonio G. Marques,
- Abstract summary: We study the problem of learning optimal policies in finite-horizon Markov Decision Processes (MDPs)
In finite-horizon MDPs, the policies, and therefore the value functions (VFs) are not stationary.
We propose modeling the VFs of finite-horizon MDPs as low-rank tensors, enabling a scalable representation that renders the problem of learning optimal policies tractable.
- Score: 9.072279909866845
- License:
- Abstract: We study the problem of learning optimal policies in finite-horizon Markov Decision Processes (MDPs) using low-rank reinforcement learning (RL) methods. In finite-horizon MDPs, the policies, and therefore the value functions (VFs) are not stationary. This aggravates the challenges of high-dimensional MDPs, as they suffer from the curse of dimensionality and high sample complexity. To address these issues, we propose modeling the VFs of finite-horizon MDPs as low-rank tensors, enabling a scalable representation that renders the problem of learning optimal policies tractable. We introduce an optimization-based framework for solving the Bellman equations with low-rank constraints, along with block-coordinate descent (BCD) and block-coordinate gradient descent (BCGD) algorithms, both with theoretical convergence guarantees. For scenarios where the system dynamics are unknown, we adapt the proposed BCGD method to estimate the VFs using sampled trajectories. Numerical experiments further demonstrate that the proposed framework reduces computational demands in controlled synthetic scenarios and more realistic resource allocation problems.
Related papers
- Alternating Minimization Schemes for Computing Rate-Distortion-Perception Functions with $f$-Divergence Perception Constraints [10.564071872770146]
We study the computation of the rate-distortion-perception function (RDPF) for discrete memoryless sources.
We characterize the optimal parametric solutions.
We provide sufficient conditions on the distortion and the perception constraints.
arXiv Detail & Related papers (2024-08-27T12:50:12Z) - Floorplanning of VLSI by Mixed-Variable Optimization [42.82770651937298]
This paper proposes memetic algorithms to solve mixed-variable floorplanning problems.
Proposed algorithms are superior to some celebrated B*-tree based floorplanning algorithms.
arXiv Detail & Related papers (2024-01-27T06:34:16Z) - Robust Stochastically-Descending Unrolled Networks [85.6993263983062]
Deep unrolling is an emerging learning-to-optimize method that unrolls a truncated iterative algorithm in the layers of a trainable neural network.
We show that convergence guarantees and generalizability of the unrolled networks are still open theoretical problems.
We numerically assess unrolled architectures trained under the proposed constraints in two different applications.
arXiv Detail & Related papers (2023-12-25T18:51:23Z) - Provably Efficient UCB-type Algorithms For Learning Predictive State
Representations [55.00359893021461]
The sequential decision-making problem is statistically learnable if it admits a low-rank structure modeled by predictive state representations (PSRs)
This paper proposes the first known UCB-type approach for PSRs, featuring a novel bonus term that upper bounds the total variation distance between the estimated and true models.
In contrast to existing approaches for PSRs, our UCB-type algorithms enjoy computational tractability, last-iterate guaranteed near-optimal policy, and guaranteed model accuracy.
arXiv Detail & Related papers (2023-07-01T18:35:21Z) - Multi-Objective Policy Gradients with Topological Constraints [108.10241442630289]
We present a new algorithm for a policy gradient in TMDPs by a simple extension of the proximal policy optimization (PPO) algorithm.
We demonstrate this on a real-world multiple-objective navigation problem with an arbitrary ordering of objectives both in simulation and on a real robot.
arXiv Detail & Related papers (2022-09-15T07:22:58Z) - Linear programming-based solution methods for constrained POMDPs [0.5156484100374059]
Constrained partially observable Markov decision processes (CPOMDPs) have been used to model various real-world phenomena.
We use grid-based approximations in combination with linear programming (LP) models to generate approximate policies for CPOMDPs.
arXiv Detail & Related papers (2022-06-28T15:22:24Z) - Value-Function-based Sequential Minimization for Bi-level Optimization [52.39882976848064]
gradient-based Bi-Level Optimization (BLO) methods have been widely applied to handle modern learning tasks.
There are almost no gradient-based methods able to solve BLO in challenging scenarios, such as BLO with functional constraints and pessimistic BLO.
We provide Bi-level Value-Function-based Sequential Minimization (BVFSM) to address the above issues.
arXiv Detail & Related papers (2021-10-11T03:13:39Z) - Solving Multistage Stochastic Linear Programming via Regularized Linear
Decision Rules: An Application to Hydrothermal Dispatch Planning [77.34726150561087]
We propose a novel regularization scheme for linear decision rules (LDR) based on the AdaSO (adaptive least absolute shrinkage and selection operator)
Experiments show that the overfit threat is non-negligible when using the classical non-regularized LDR to solve MSLP.
For the LHDP problem, our analysis highlights the following benefits of the proposed framework in comparison to the non-regularized benchmark.
arXiv Detail & Related papers (2021-10-07T02:36:14Z) - Model-Free Reinforcement Learning for Optimal Control of MarkovDecision
Processes Under Signal Temporal Logic Specifications [7.842869080999489]
We present a model-free reinforcement learning algorithm to find an optimal policy for a finite-horizon Markov decision process.
We illustrate the effectiveness of our approach in the context of robotic motion planning for complex missions under uncertainty and performance objectives.
arXiv Detail & Related papers (2021-09-27T22:44:55Z) - Modular Deep Reinforcement Learning for Continuous Motion Planning with
Temporal Logic [59.94347858883343]
This paper investigates the motion planning of autonomous dynamical systems modeled by Markov decision processes (MDP)
The novelty is to design an embedded product MDP (EP-MDP) between the LDGBA and the MDP.
The proposed LDGBA-based reward shaping and discounting schemes for the model-free reinforcement learning (RL) only depend on the EP-MDP states.
arXiv Detail & Related papers (2021-02-24T01:11:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.