Can Multimodal LLMs do Visual Temporal Understanding and Reasoning? The answer is No!
- URL: http://arxiv.org/abs/2501.10674v2
- Date: Tue, 18 Feb 2025 09:51:00 GMT
- Title: Can Multimodal LLMs do Visual Temporal Understanding and Reasoning? The answer is No!
- Authors: Mohamed Fazli Imam, Chenyang Lyu, Alham Fikri Aji,
- Abstract summary: We propose a challenging evaluation benchmark named TemporalVQA.
The first part requires MLLMs to determine the sequence of events by analyzing temporally consecutive video frames.
The second part presents image pairs with varying time differences, framed as multiple-choice questions, asking MLLMs to estimate the time-lapse between images with options ranging from seconds to years.
Our evaluations of advanced MLLMs, including models like GPT-4o and Gemini-1.5-Pro, reveal significant challenges.
- Score: 22.75945626401567
- License:
- Abstract: Multimodal Large Language Models (MLLMs) have achieved significant advancements in tasks like Visual Question Answering (VQA) by leveraging foundational Large Language Models (LLMs). However, their abilities in specific areas such as visual temporal understanding, which is crucial for comprehending real-world dynamics, remain underexplored. To address this, we propose a challenging evaluation benchmark named TemporalVQA, consisting of two parts: 1) Temporal Order Understanding and 2) Time-lapse Estimation. The first part requires MLLMs to determine the sequence of events by analyzing temporally consecutive video frames. The second part presents image pairs with varying time differences, framed as multiple-choice questions, asking MLLMs to estimate the time-lapse between images with options ranging from seconds to years. Our evaluations of advanced MLLMs, including models like GPT-4o and Gemini-1.5-Pro, reveal significant challenges: GPT-4o achieved only 49.1% average consistent accuracy in temporal order task and 70% in time-lapse estimation, with open-source models performing even poorly. These findings underscore the limitations of current MLLMs in visual temporal understanding and reasoning, highlighting the need for further improvements for their temporal capability. Our dataset can be found at https://huggingface.co/datasets/fazliimam/temporal-vqa.
Related papers
- ChronoSense: Exploring Temporal Understanding in Large Language Models with Time Intervals of Events [0.20132569095596248]
We present ChronoSense, a new benchmark for evaluating Large Language Models' temporal understanding.
We assess the performance of seven recent LLMs using this benchmark and the results indicate that models handle Allen relations, even symmetrical ones, quite differently.
Overall, the models' low performance highlights the need for improved temporal understanding in LLMs.
arXiv Detail & Related papers (2025-01-06T14:27:41Z) - Perceive, Query & Reason: Enhancing Video QA with Question-Guided Temporal Queries [50.47265863322891]
Video Question Answering (Video QA) is a challenging video understanding task that requires models to comprehend entire videos.
Recent advancements in Multimodal Large Language Models (MLLMs) have transformed video QA by leveraging their exceptional commonsense reasoning capabilities.
We propose T-Former, a novel temporal modeling method that creates a question-guided temporal bridge between frame-wise visual perception and the reasoning capabilities of LLMs.
arXiv Detail & Related papers (2024-12-26T17:53:14Z) - ChatTS: Aligning Time Series with LLMs via Synthetic Data for Enhanced Understanding and Reasoning [10.854285913078257]
This paper introduces ChatTS, a novel MLLM designed for time series analysis.
ChatTS treats time series as a modality, similar to how vision MLLMs process images.
Time Series Evol-Instruct generates diverse time series Q&As, enhancing the model's reasoning capabilities.
arXiv Detail & Related papers (2024-12-04T08:06:15Z) - TemporalBench: Benchmarking Fine-grained Temporal Understanding for Multimodal Video Models [75.42002690128486]
TemporalBench is a new benchmark dedicated to evaluating fine-grained temporal understanding in videos.
It consists of 10K video question-answer pairs, derived from 2K high-quality human annotations detailing the temporal dynamics in video clips.
Results show that state-of-the-art models like GPT-4o achieve only 38.5% question answering accuracy on TemporalBench.
arXiv Detail & Related papers (2024-10-14T17:59:58Z) - Revisiting Multi-Modal LLM Evaluation [29.094387692681337]
We pioneer evaluating recent MLLMs (LLaVA 1.5, LLaVA-NeXT, BLIP2, InstructBLIP, GPT-4V, and GPT-4o) on datasets designed to address weaknesses in earlier ones.
Our code is integrated into the widely used LAVIS framework for MLLM evaluation, enabling the rapid assessment of future MLLMs.
arXiv Detail & Related papers (2024-08-09T20:55:46Z) - Coarse Correspondences Boost Spatial-Temporal Reasoning in Multimodal Language Model [51.83436609094658]
We introduce Coarse Correspondences, a simple lightweight method that enhances MLLMs' spatial-temporal reasoning with 2D images as input.
Our method uses a lightweight tracking model to identify primary object correspondences between frames in a video or across different image viewpoints.
We demonstrate that this simple training-free approach brings substantial gains to GPT4-V/O consistently on four benchmarks.
arXiv Detail & Related papers (2024-08-01T17:57:12Z) - Q-Bench+: A Benchmark for Multi-modal Foundation Models on Low-level Vision from Single Images to Pairs [71.07108539262721]
We design benchmark settings to emulate human language responses related to low-level vision.
We extend the low-level perception-related question-answering and description evaluations of MLLMs from single images to image pairs.
We demonstrate that several MLLMs have decent low-level visual competencies on single images, but only GPT-4V exhibits higher accuracy on pairwise comparisons than humans.
arXiv Detail & Related papers (2024-02-11T06:44:11Z) - Temporal Insight Enhancement: Mitigating Temporal Hallucination in
Multimodal Large Language Models [20.33971942003996]
This study introduces an innovative method to address event-level hallucinations in MLLMs.
We propose a unique mechanism that decomposes on-demand event queries into iconic actions.
We employ models like CLIP and BLIP2 to predict specific timestamps for event occurrences.
arXiv Detail & Related papers (2024-01-18T10:18:48Z) - SEED-Bench-2: Benchmarking Multimodal Large Language Models [67.28089415198338]
Multimodal large language models (MLLMs) have recently demonstrated exceptional capabilities in generating not only texts but also images given interleaved multimodal inputs.
SEED-Bench-2 comprises 24K multiple-choice questions with accurate human annotations, which spans 27 dimensions.
We evaluate the performance of 23 prominent open-source MLLMs and summarize valuable observations.
arXiv Detail & Related papers (2023-11-28T05:53:55Z) - M4LE: A Multi-Ability Multi-Range Multi-Task Multi-Domain Long-Context Evaluation Benchmark for Large Language Models [58.54538318912159]
M4LE is a benchmark for evaluating the long-sequence capability of large language models (LLMs)
M4LE is based on a diverse NLP task pool comprising 36 NLP task types and 12 domains.
We conducted a systematic evaluation on 11 well-established LLMs, especially those optimized for long-sequence inputs.
arXiv Detail & Related papers (2023-10-30T03:11:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.