A Mass-Conserving-Perceptron for Machine Learning-Based Modeling of Geoscientific Systems
- URL: http://arxiv.org/abs/2310.08644v4
- Date: Sun, 12 May 2024 17:46:03 GMT
- Title: A Mass-Conserving-Perceptron for Machine Learning-Based Modeling of Geoscientific Systems
- Authors: Yuan-Heng Wang, Hoshin V. Gupta,
- Abstract summary: We propose a physically-interpretable Mass Conserving Perceptron (MCP) as a way to bridge the gap between PC-based and ML-based modeling approaches.
The MCP exploits the inherent isomorphism between the directed graph structures underlying both PC models and GRNNs to explicitly represent the mass-conserving nature of physical processes.
- Score: 1.1510009152620668
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Although decades of effort have been devoted to building Physical-Conceptual (PC) models for predicting the time-series evolution of geoscientific systems, recent work shows that Machine Learning (ML) based Gated Recurrent Neural Network technology can be used to develop models that are much more accurate. However, the difficulty of extracting physical understanding from ML-based models complicates their utility for enhancing scientific knowledge regarding system structure and function. Here, we propose a physically-interpretable Mass Conserving Perceptron (MCP) as a way to bridge the gap between PC-based and ML-based modeling approaches. The MCP exploits the inherent isomorphism between the directed graph structures underlying both PC models and GRNNs to explicitly represent the mass-conserving nature of physical processes while enabling the functional nature of such processes to be directly learned (in an interpretable manner) from available data using off-the-shelf ML technology. As a proof of concept, we investigate the functional expressivity (capacity) of the MCP, explore its ability to parsimoniously represent the rainfall-runoff (RR) dynamics of the Leaf River Basin, and demonstrate its utility for scientific hypothesis testing. To conclude, we discuss extensions of the concept to enable ML-based physical-conceptual representation of the coupled nature of mass-energy-information flows through geoscientific systems.
Related papers
- Physics-Guided Foundation Model for Scientific Discovery: An Application to Aquatic Science [13.28811382673697]
We propose a textittextbfPhysics-textbfGuided textbfFoundation textbfModel (textbfPGFM) that combines pre-trained ML models and physics-based models.
We demonstrate the effectiveness of this methodology in modeling water temperature and dissolved oxygen dynamics in real-world lakes.
arXiv Detail & Related papers (2025-02-10T00:48:10Z) - MAPS: Advancing Multi-Modal Reasoning in Expert-Level Physical Science [62.96434290874878]
Current Multi-Modal Large Language Models (MLLM) have shown strong capabilities in general visual reasoning tasks.
We develop a new framework, named Multi-Modal Scientific Reasoning with Physics Perception and Simulation (MAPS) based on an MLLM.
MAPS decomposes expert-level multi-modal reasoning task into physical diagram understanding via a Physical Perception Model (PPM) and reasoning with physical knowledge via a simulator.
arXiv Detail & Related papers (2025-01-18T13:54:00Z) - Using Machine Learning to Discover Parsimonious and Physically-Interpretable Representations of Catchment-Scale Rainfall-Runoff Dynamics [1.1510009152620668]
An underexplored aspect of machine learning is how to develop minimally-optimal representations.
Our own view is that ML-based modeling should be based in use of computational units that are fundamentally interpretable by design.
We show, in the context of lumped catchment modeling, that physical interpretability and predictive performance can both be achieved using a relatively parsimonious distributed-state network.
arXiv Detail & Related papers (2024-12-06T08:30:01Z) - Recent Advances on Machine Learning for Computational Fluid Dynamics: A Survey [51.87875066383221]
This paper introduces fundamental concepts, traditional methods, and benchmark datasets, then examine the various roles Machine Learning plays in improving CFD.
We highlight real-world applications of ML for CFD in critical scientific and engineering disciplines, including aerodynamics, combustion, atmosphere & ocean science, biology fluid, plasma, symbolic regression, and reduced order modeling.
We draw the conclusion that ML is poised to significantly transform CFD research by enhancing simulation accuracy, reducing computational time, and enabling more complex analyses of fluid dynamics.
arXiv Detail & Related papers (2024-08-22T07:33:11Z) - Replication Study: Enhancing Hydrological Modeling with Physics-Guided
Machine Learning [0.0]
Current hydrological modeling methods combine data-driven Machine Learning algorithms and traditional physics-based models.
Despite the accuracy of ML in outcome prediction, the integration of scientific knowledge is crucial for reliable predictions.
This study introduces a Physics Informed Machine Learning model, which merges the process understanding of conceptual hydrological models with the predictive efficiency of ML algorithms.
arXiv Detail & Related papers (2024-02-21T16:26:59Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
We present Mechanistic Neural Networks, a neural network design for machine learning applications in the sciences.
It incorporates a new Mechanistic Block in standard architectures to explicitly learn governing differential equations as representations.
Central to our approach is a novel Relaxed Linear Programming solver (NeuRLP) inspired by a technique that reduces solving linear ODEs to solving linear programs.
arXiv Detail & Related papers (2024-02-20T15:23:24Z) - ContPhy: Continuum Physical Concept Learning and Reasoning from Videos [86.63174804149216]
ContPhy is a novel benchmark for assessing machine physical commonsense.
We evaluated a range of AI models and found that they still struggle to achieve satisfactory performance on ContPhy.
We also introduce an oracle model (ContPRO) that marries the particle-based physical dynamic models with the recent large language models.
arXiv Detail & Related papers (2024-02-09T01:09:21Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - A physics-constrained machine learning method for mapping gapless land
surface temperature [6.735896406986559]
In this paper, a physics- ML model is proposed to generate gapless LST with physical meanings and high accuracy.
The light-boosting machine (LGBM) model, which uses only remote sensing data as gradient input serves as the pure ML model.
Compared with a pure physical method and pure ML methods, the PC-LGBM model improves the prediction accuracy and physical interpretability of LST.
arXiv Detail & Related papers (2023-07-03T01:44:48Z) - Scientific Inference With Interpretable Machine Learning: Analyzing Models to Learn About Real-World Phenomena [4.312340306206884]
Interpretable machine learning offers a solution by analyzing models holistically to derive interpretations.
Current IML research is focused on auditing ML models rather than leveraging them for scientific inference.
We present a framework for designing IML methods-termed 'property descriptors' that illuminate not just the model, but also the phenomenon it represents.
arXiv Detail & Related papers (2022-06-11T10:13:21Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
We consider the impact of the training set and its structure on the quality of the long-term prediction.
We show how an informed design of the training set, based on invariants of the system and the structure of the underlying attractor, significantly improves the resulting models.
arXiv Detail & Related papers (2021-12-15T20:09:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.