論文の概要: Learn-by-interact: A Data-Centric Framework for Self-Adaptive Agents in Realistic Environments
- arxiv url: http://arxiv.org/abs/2501.10893v1
- Date: Sat, 18 Jan 2025 22:34:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:24:51.487399
- Title: Learn-by-interact: A Data-Centric Framework for Self-Adaptive Agents in Realistic Environments
- Title(参考訳): Learn-by-interact: 現実的環境における自己適応型エージェントのためのデータ中心フレームワーク
- Authors: Hongjin Su, Ruoxi Sun, Jinsung Yoon, Pengcheng Yin, Tao Yu, Sercan Ö. Arık,
- Abstract要約: Learn-by-interactは、大規模な言語モデル(LLM)を人間のアノテーションなしで任意の環境に適用するための、データ中心のフレームワークである。
我々は、トレーニングベースのシナリオとトレーニング不要なインコンテキスト学習(ICL)の両方でそれらを用いて、合成データの質を評価する。
SWE-bench、WebArena、OSWorld、Spider2-Vが現実的なコーディング、Web、デスクトップ環境にまたがる実験は、Learning-by-interactの有効性を示している。
- 参考スコア(独自算出の注目度): 33.83610929282721
- License:
- Abstract: Autonomous agents powered by large language models (LLMs) have the potential to enhance human capabilities, assisting with digital tasks from sending emails to performing data analysis. The abilities of existing LLMs at such tasks are often hindered by the lack of high-quality agent data from the corresponding environments they interact with. We propose Learn-by-interact, a data-centric framework to adapt LLM agents to any given environments without human annotations. Learn-by-interact synthesizes trajectories of agent-environment interactions based on documentations, and constructs instructions by summarizing or abstracting the interaction histories, a process called backward construction. We assess the quality of our synthetic data by using them in both training-based scenarios and training-free in-context learning (ICL), where we craft innovative retrieval approaches optimized for agents. Extensive experiments on SWE-bench, WebArena, OSWorld and Spider2-V spanning across realistic coding, web, and desktop environments show the effectiveness of Learn-by-interact in various downstream agentic tasks -- baseline results are improved by up to 12.2\% for ICL with Claude-3.5 and 19.5\% for training with Codestral-22B. We further demonstrate the critical role of backward construction, which provides up to 14.0\% improvement for training. Our ablation studies demonstrate the efficiency provided by our synthesized data in ICL and the superiority of our retrieval pipeline over alternative approaches like conventional retrieval-augmented generation (RAG). We expect that Learn-by-interact will serve as a foundation for agent data synthesis as LLMs are increasingly deployed at real-world environments.
- Abstract(参考訳): 大規模言語モデル(LLM)を利用した自律エージェントは、電子メールの送信からデータ分析の実行まで、デジタルタスクを支援することで、人間の能力を高める可能性がある。
このようなタスクにおける既存のLLMの能力は、それらが相互作用する環境からの高品質なエージェントデータの欠如によって妨げられることが多い。
我々はLearning-by-interactというデータ中心のフレームワークを提案し、人間のアノテーションを使わずに LLM エージェントを任意の環境に適用する。
Learn-by-interactはドキュメントに基づいてエージェントと環境の相互作用の軌跡を合成し、インタラクション履歴を要約または抽象化することで命令を構築する。
エージェントに最適化された革新的な検索手法を構築するために、トレーニングベースのシナリオとトレーニング不要なインコンテキスト学習(ICL)の両方で使用することで、合成データの質を評価する。
SWE-bench、WebArena、OSWorld、Spider2-Vが現実的なコーディング、Web、デスクトップ環境にまたがる広範な実験は、さまざまな下流エージェントタスクにおけるLearning-by-interactの有効性を示している。
さらに、トレーニングにおいて最大14.0\%の改善をもたらす、後方建設の重要な役割を実証する。
我々のアブレーション研究は、ICLで合成したデータから得られる効率と、従来の検索拡張生成(RAG)のような代替手法よりも検索パイプラインの方が優れていることを示す。
LLMが現実世界の環境にますます配備されるにつれて、Learning-by-interactがエージェントデータ合成の基礎になることを期待しています。
関連論文リスト
- Dynamic benchmarking framework for LLM-based conversational data capture [0.0]
本稿では,大規模言語モデル(LLM)を評価するためのベンチマークフレームワークを提案する。
生成エージェントシミュレーションを統合して、情報抽出、コンテキスト認識、適応エンゲージメントといった重要次元のパフォーマンスを評価する。
その結果,不明瞭な応答を扱う場合,適応戦略によりデータの抽出精度が向上することが示唆された。
論文 参考訳(メタデータ) (2025-02-04T15:47:47Z) - Reinforcement Learning for Long-Horizon Interactive LLM Agents [56.9860859585028]
インタラクティブデジタルエージェント(IDA)は、ステートフルなデジタル環境のAPIを利用して、ユーザの要求に応じてタスクを実行する。
対象環境で直接IDAを訓練する強化学習(RL)手法を提案する。
我々は、近似ポリシー最適化のデータおよびメモリ効率の亜種である LOOP を導出する。
論文 参考訳(メタデータ) (2025-02-03T18:35:42Z) - Multi-Armed Bandit Approach for Optimizing Training on Synthetic Data [7.603659241572307]
動的ユーザビリティ指標と組み合わせた UCB ベースのトレーニング手法を提案する。
提案手法は,合成画像と対応する実・合成データセットからの低レベル・高レベル情報を統合する。
提案手法は, ユーザビリティに基づいて, 合成画像のランク付けに有効な方法であることを示す。
論文 参考訳(メタデータ) (2024-12-06T23:36:36Z) - Understanding Synthetic Context Extension via Retrieval Heads [51.8869530817334]
本稿では,検索と推論を必要とする3つの長文タスクに対する合成データの微調整について検討する。
合成データに基づいてトレーニングされたモデルは、実際のデータには及ばないが、驚くべきことに、ミスマッチを解釈できる。
我々の結果は、合成データの微調整性能の解釈方法と、長期にわたる実世界の能力学習のためのより良いデータ作成方法に光を当てた。
論文 参考訳(メタデータ) (2024-10-29T17:55:00Z) - Synthesizing Post-Training Data for LLMs through Multi-Agent Simulation [51.20656279478878]
MATRIXは、様々なテキストベースのシナリオを自動的に生成するマルチエージェントシミュレータである。
制御可能でリアルなデータ合成のためのMATRIX-Genを紹介する。
AlpacaEval 2 と Arena-Hard のベンチマークでは、Llama-3-8B-Base が、MATRIX-Gen によって合成されたデータセット上で、たった 20K の命令応答ペアで、Meta の Llama-3-8B-Instruct モデルより優れています。
論文 参考訳(メタデータ) (2024-10-18T08:01:39Z) - AvaTaR: Optimizing LLM Agents for Tool Usage via Contrastive Reasoning [93.96463520716759]
大規模言語モデル(LLM)エージェントは、精度と幻覚を高めるために外部ツールと知識を活用する際、印象的な能力を示した。
本稿では、LLMエージェントを最適化して提供されたツールを効果的に活用し、与えられたタスクのパフォーマンスを向上させる新しい自動化フレームワークであるAvaTaRを紹介する。
論文 参考訳(メタデータ) (2024-06-17T04:20:02Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
認知のための行動認識型身体学習(ALP)について紹介する。
ALPは、強化学習ポリシーと逆ダイナミクス予測目標を最適化することにより、行動情報を表現学習に組み込む。
ALPは、複数の下流認識タスクにおいて、既存のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-06-16T21:51:04Z) - Offline Robot Reinforcement Learning with Uncertainty-Guided Human
Expert Sampling [11.751910133386254]
バッチ(オフライン)強化学習の最近の進歩は、利用可能なオフラインデータから学習する上で有望な結果を示している。
本研究では,不確実性推定を用いて人間の実演データを注入する手法を提案する。
実験の結果,本手法は,専門家データと準最適エージェントから収集したデータを組み合わせる方法に比べて,よりサンプル効率が高いことがわかった。
論文 参考訳(メタデータ) (2022-12-16T01:41:59Z) - Nemo: Guiding and Contextualizing Weak Supervision for Interactive Data
Programming [77.38174112525168]
私たちは、WS 学習パイプラインの全体的な生産性を、一般的な WS 監督アプローチと比較して平均20%(最大 47% のタスク)改善する、エンドツーエンドのインタラクティブなスーパービジョンシステムである Nemo を紹介します。
論文 参考訳(メタデータ) (2022-03-02T19:57:32Z) - Causal Reinforcement Learning using Observational and Interventional
Data [14.856472820492364]
環境の因果モデルを効率的に学習することは、PMDPで動作するモデルRLエージェントの重要な課題である。
学習エージェントが環境と直接対話することでオンライン体験を収集できるシナリオを考察する。
オンラインとオフラインのエクスペリエンスは、因果モデルを学ぶために安全に組み合わせられるか?
論文 参考訳(メタデータ) (2021-06-28T06:58:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。