Unfolding Tensors to Identify the Graph in Discrete Latent Bipartite Graphical Models
- URL: http://arxiv.org/abs/2501.10897v1
- Date: Sat, 18 Jan 2025 23:08:25 GMT
- Title: Unfolding Tensors to Identify the Graph in Discrete Latent Bipartite Graphical Models
- Authors: Yuqi Gu,
- Abstract summary: We use a tensor unfolding technique to prove a new identifiability result for discrete bipartite graphical models.
Our result has useful implications for these models' trustworthy applications in scientific disciplines and interpretable machine learning.
- Score: 1.7132914341329848
- License:
- Abstract: We use a tensor unfolding technique to prove a new identifiability result for discrete bipartite graphical models, which have a bipartite graph between an observed and a latent layer. This model family includes popular models such as Noisy-Or Bayesian networks for medical diagnosis and Restricted Boltzmann Machines in machine learning. These models are also building blocks for deep generative models. Our result on identifying the graph structure enjoys the following nice properties. First, our identifiability proof is constructive, in which we innovatively unfold the population tensor under the model into matrices and inspect the rank properties of the resulting matrices to uncover the graph. This proof itself gives a population-level structure learning algorithm that outputs both the number of latent variables and the bipartite graph. Second, we allow various forms of nonlinear dependence among the variables, unlike many continuous latent variable graphical models that rely on linearity to show identifiability. Third, our identifiability condition is interpretable, only requiring each latent variable to connect to at least two "pure" observed variables in the bipartite graph. The new result not only brings novel advances in algebraic statistics, but also has useful implications for these models' trustworthy applications in scientific disciplines and interpretable machine learning.
Related papers
- Graph-Dictionary Signal Model for Sparse Representations of Multivariate Data [49.77103348208835]
We define a novel Graph-Dictionary signal model, where a finite set of graphs characterizes relationships in data distribution through a weighted sum of their Laplacians.
We propose a framework to infer the graph dictionary representation from observed data, along with a bilinear generalization of the primal-dual splitting algorithm to solve the learning problem.
We exploit graph-dictionary representations in a motor imagery decoding task on brain activity data, where we classify imagined motion better than standard methods.
arXiv Detail & Related papers (2024-11-08T17:40:43Z) - Creating generalizable downstream graph models with random projections [22.690120515637854]
We investigate graph representation learning approaches that enable models to generalize across graphs.
We show that using random projections to estimate multiple powers of the transition matrix allows us to build a set of isomorphism-invariant features.
The resulting features can be used to recover enough information about the local neighborhood of a node to enable inference with relevance competitive to other approaches.
arXiv Detail & Related papers (2023-02-17T14:27:00Z) - Spectral Augmentations for Graph Contrastive Learning [50.149996923976836]
Contrastive learning has emerged as a premier method for learning representations with or without supervision.
Recent studies have shown its utility in graph representation learning for pre-training.
We propose a set of well-motivated graph transformation operations to provide a bank of candidates when constructing augmentations for a graph contrastive objective.
arXiv Detail & Related papers (2023-02-06T16:26:29Z) - GrannGAN: Graph annotation generative adversarial networks [72.66289932625742]
We consider the problem of modelling high-dimensional distributions and generating new examples of data with complex relational feature structure coherent with a graph skeleton.
The model we propose tackles the problem of generating the data features constrained by the specific graph structure of each data point by splitting the task into two phases.
In the first it models the distribution of features associated with the nodes of the given graph, in the second it complements the edge features conditionally on the node features.
arXiv Detail & Related papers (2022-12-01T11:49:07Z) - Heterogeneous Graph Neural Networks using Self-supervised Reciprocally
Contrastive Learning [102.9138736545956]
Heterogeneous graph neural network (HGNN) is a very popular technique for the modeling and analysis of heterogeneous graphs.
We develop for the first time a novel and robust heterogeneous graph contrastive learning approach, namely HGCL, which introduces two views on respective guidance of node attributes and graph topologies.
In this new approach, we adopt distinct but most suitable attribute and topology fusion mechanisms in the two views, which are conducive to mining relevant information in attributes and topologies separately.
arXiv Detail & Related papers (2022-04-30T12:57:02Z) - Graph Self-supervised Learning with Accurate Discrepancy Learning [64.69095775258164]
We propose a framework that aims to learn the exact discrepancy between the original and the perturbed graphs, coined as Discrepancy-based Self-supervised LeArning (D-SLA)
We validate our method on various graph-related downstream tasks, including molecular property prediction, protein function prediction, and link prediction tasks, on which our model largely outperforms relevant baselines.
arXiv Detail & Related papers (2022-02-07T08:04:59Z) - An Interpretable Graph Generative Model with Heterophily [38.59200985962146]
We propose the first edge-independent graph generative model that is expressive enough to capture heterophily.
Our experiments demonstrate the effectiveness of our model for a variety of important application tasks.
arXiv Detail & Related papers (2021-11-04T17:34:39Z) - Learnable Graph-regularization for Matrix Decomposition [5.9394103049943485]
We propose a learnable graph-regularization model for matrix decomposition.
It builds a bridge between graph-regularized methods and probabilistic matrix decomposition models.
It learns two graphical structures in real-time in an iterative manner via sparse precision matrix estimation.
arXiv Detail & Related papers (2020-10-16T17:12:39Z) - Permutation Invariant Graph Generation via Score-Based Generative
Modeling [114.12935776726606]
We propose a permutation invariant approach to modeling graphs, using the recent framework of score-based generative modeling.
In particular, we design a permutation equivariant, multi-channel graph neural network to model the gradient of the data distribution at the input graph.
For graph generation, we find that our learning approach achieves better or comparable results to existing models on benchmark datasets.
arXiv Detail & Related papers (2020-03-02T03:06:14Z) - The Power of Graph Convolutional Networks to Distinguish Random Graph
Models: Short Version [27.544219236164764]
Graph convolutional networks (GCNs) are a widely used method for graph representation learning.
We investigate the power of GCNs to distinguish between different random graph models on the basis of the embeddings of their sample graphs.
arXiv Detail & Related papers (2020-02-13T17:58:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.